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Objective 
Our aim is to show initial results with representative 
profiles and with different boundary conditions on flow 
velocity and particle flux. 
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Introduction: Simulations of VDEs can be 
used to predict their effects in future devices. 

•  VDEs have greater potential for causing physical damage than other 
‘off-normal’ events. 

•  The goal of nonlinear extended-MHD VDE simulations is to quantify 
predictions. 

•  Assess heat and mechanical stresses. 
•  Predict onset of 3D instability and its effects. 
•  For example, see Strauss, Paccagnella, and Breslau, PoP 17, 

82505 (2010). 
•  Besides core MHD, simulations need resistive wall and external-

mode capabilities. 



Modeling with NIMROD: Disruption simulation 
requires attention to initialization, boundary 
conditions, and coupling to external regions. 
For initialization, we have enhanced the NIMEQ solver 
[Howell and Sovinec, CPC 185, 1415] to distinguish open- and 
closed-flux regions without aligned meshing. 
•  Using Bpol only, field-lines are traced from NIMROD’s spectral-

element nodes during each Picard iteration. 

•  Traces reaching a modest upper limit before hitting the 
domain boundary identify points within the closed flux. 

•  The identification is used when evaluating P(ψ) and F(ψ). 

•  Fields from external coils are included, but our Grad-
Shafranov computations are fixed-boundary at this point. 



An example shows the initialization for one of the 
cases presented later. 

•  Expecting large n=0 displacement, the mesh is rectangular 
(72×96, bicubic) and not aligned with the magnetic flux. 

•  The stopping length for poloidal-field tracing is 6×Router. 

Final	  ψ	  distribu-on	  
has	  one	  X-‐point	  
inside	  the	  domain.	  

Normalized	  length	  as	  a	  
func-on	  of	  launch	  point	  
iden-fies	  closed	  flux.	  

Pressure	  (le?)	  and	  F=RBφ	  (right)	  are	  
prescribed	  to	  be	  constant	  where	  the	  
normalized	  length	  is	  less	  than	  unity.	  
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•  The diffusive control of divergence error works well with high-order 
elements [Sovinec, et al., JCP 195, 355 (2004)]. 
•  The particle diffusion terms provide numerical smoothing. 
•  Two-fluid modeling will be applied in subsequent disruption studies. 

Plasma evolution from the initial state is modeled with 
NIMROD’s single-fluid, single-temperature system. 



•  Spitzer η ~ T −3/2 is used throughout the central computational region 
that models plasma. 

•  The cases shown below have τA≅1 and η(0)=10−6.  With a≅0.75, 
S(0)≅5×105.  T profiles vary by 104, but η is limited to 10−2 in most 
cases. 

•  Number density profiles vary by 10. 

•  Thermal conduction is anisotropic,                                                 , with 
χ||=5×10−2 and χ =5×10−6. 

•  Viscous stress is isotropic,                                                       , with 
νiso=5×10−5. 

•  The artificial particle diffusivities are set to Dn=5×10−6 and Dh=1×10−10. 

The present modeling is simplified, but closure 
relations and diffusivity parameters are important. 
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The plasma region is coupled to an external 
vacuum through a resistive wall. 

•  Plasma modeling is in the central 
region only. 

•  The central region is coupled to a 
meshed external region that is also 
solved in NIMROD’s representation. 

•  The plot on the right demonstrates 
poloidal flux leaking into a 
horseshoe-shaped external region 
(used in the following).  

•  Regions are coupled by an implicit 
implementation of the thin-wall 
equation. 
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•  Standard conditions for NIMROD simulations with thermal conduction 
and particle diffusion are: 

•  n and T remain fixed at their initial low values. 

•  All components of flow are zero, V = 0.  “Salt water” 

•  Conditions based on magnetic drift have been implemented: 

•  Flow drifts out, based on the resistive-wall E.  “DEBS” 

•  T remains fixed at its initial value. 

•  n is either fixed or advects into the resistive wall,                       , 
which has been implemented with the explicit (old) n at each step. 

•  Along the outer boundary,               , so          is fixed. 

Boundary conditions on B are set at the outer 
boundary, while conditions on n, T, and V are set 
along the perimeter of the central region. 

n̂ ⋅V = n̂ ⋅ 1
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•  The NIMROD strategy considers each 
region as a separate domain that is 
coupled to other domains. 

•  Domain decomposition is applied to each 
region with the same set of processes. 

•  The geometry of the interface and the 
decompositions of the regions dictate 
communication patterns. 

•  In the example shown at right, process 1 
communicates with 0 and 2, while 
processes 0 and 2 only communicate with 
process 1. 

•  Parallel computations reproduce single-
process results on small test cases but 
not for others.  Results shown here have 
been produced with serial computations. 

Development for parallel communication across 
(resistive-wall) interfaces is near completion. 

Schematic shows a 2-region, 3-process 
example.  Each region has subdomains, 
and processes are numbered from 0. 



Axisymmetric results: Recent computations 
demonstrate progress for VDE tokamak simulation. 

•  The aspect ratio and elongation are representative. 

•  P(ψ) and F(ψ) profiles are simple quadratic and linear functions, 
respectively, but values are based on DIII-D with F nearly uniform 
and β(0)=8%. 

•  There is no applied loop voltage in these computations, so current is 
free to decay. 

•  τr for the initial profile is of order 105. 

•  With ηw/µ0δx = 10−3 and a ~ 1, τw ~ 103. 

•  The resistive wall sets the time-scale for evolution. 

•  Equilibria are computed with wall eddy currents, in addition to fixed 
external coil currents, and decay of the initial eddy currents leads to 
axisymmetric instability. 



A “control” case with conducting walls around the 
central region shows slight evolution over 400 τA. 
•  Plasma current decreases by 4.3%. 
•  Thermal energy decreases by 1.5% 

Comparison	  of	  ini-al	  and	  final	  T	  profiles	  
indicates	  slight	  spreading	  near	  separatrix.	  	  	  
Note:	  color	  is	  not	  rescaled	  in	  these	  figures.	  

t=0	   t=400	   t=400	  t=0	  

Comparison	  of	  ini-al	  and	  final	  n	  profiles	  
shows	  weak	  diffusion	  and	  some	  leakage.	  	  	  



With a resistive wall, decay of eddy currents leads 
to slow axisymmetric instability. 
•  Over ~1000 τA, plasma current (Ip) decreases by 50% and thermal 

energy decreases by 85%. 

Plasma	  current	  evolu-on	  through	  1000	  τA.	  	  	   Internal	  energy	  decays	  faster	  than	  
current	  a?er	  300	  τA	  due	  to	  thermal	  
transport	  from	  outer	  surfaces.	  

•  In these cases, the external coils stabilize the displacement after the 
wall eddy currents dissipate, and a small limited tokamak remains. 



Displacement from the decay of eddy currents is 
primarily radial in these cases. 

•  This configuration has an attracting coil at R=2.6, Z=0 (triangularity) 
between vertical-field coils at Z=±1.2. 

•  Edge plasma cools through contact with the wall. 

t=400	  t=200	   t=580	  

•  Note that the evolution is significant relative to the control case. 



With the Dirichlet boundary condition on n, diffusion 
allows mass to escape. 
•  Mass piles-up in layers near the points of contact. 

•  Outward mass flux results from                              along the surface. 

t=400	  t=200	   t=580	  

n̂ ⋅ ΓD = −n̂ ⋅Dn∇n



The evolution of current and thermal energy is 
essentially unchanged when the normal component 
of flow is set by Ew✕B drift. 
•  The comparison is presently available through 300 τA. 
•  In this case, mass flow through the boundary is set by                       . 

Plasma	  current	  comparison	  through	  300	  τA.	  	  	   Internal	  energy	  again	  decays	  faster	  than	  
current	  near	  the	  end	  of	  this	  period.	  

n̂ ⋅ Γ = n̂ ⋅ nV( )



Accumulation of mass along the surface is larger 
with the advective mass flux condition, however.  

t=300	  t=300	  

Mass	  density	  at	  300	  τA	  with	  Vn=0	  and	  
diffusive	  par-cle	  flux	  along	  surface.	  	  	  

Mass	  density	  at	  300	  τA	  with	  dri?	  
ouNlow	  and	  advec-ve	  par-cle	  flux	  
along	  the	  surface.	  	  	  



Radial component of 
V near contact point. 

The flow velocity that sends mass to the wall is larger 
than the Ew✕B drift, hence the accumulation of mass. 

•  Along the outer wall at 300 τA, δB≅0.1 and Bφ=1, so the normal 
component of the Ew×B drift is approximately 10−4. 

•  As shown below, VR exceeds 10−2, 100 times larger, so the Ew×B drift is 
negligible. 

Contours of Vφ with poloidal 
vector components. 

•  Bφ≅5Bpol near the outer 
wall, and with Vφ=0.07, 
V is largely parallel to B. 

•  The magnitude of V is a 
substantial fraction of cs 
(<0.25) in the edge of 
the simulated plasma. 

•  Along open field-lines, 
inertia is significant in 
the parallel force-
balance.  



Profiles of density and temperature 
show greater vertical displacement. 

Another case does not use the outboard shaping coil, 
and the subsequent evolution is slower. 

•  The drift condition is used on Vn, but the Dirichlet condition is used for n. 
•  The upper limit on η is 1, and η(T) varies by 106 over the central region. 
•  This computation uses larger numerical time-steps of ~1.7 τA on average. 

Evolution is slower than 
cases with the shaping 
coil.  Ip is just below 50% 
after nearly 2500 τA. 

n at t=760 T at t=760 Jφ at t=760 

Contours of Jφ 
show a sheet of 
positive current. 

•  A reversed current sheet forms near the top in the previous case. 



Discussion and Conclusions 
•  Development for initializing diverted tokamak equilibria with 

arbitrary meshing facilitates our VDE computations. 
•  Computations with the numerical external vacuum 

demonstrate representative evolution over the time-scale 
of the resistive wall. 

•  Results with Ew✕B drift conditions at the wall and advective 
particle flux are similar to results with Vn=0 and Dirichlet 
conditions on n. 

•  The extent of mass accumulation differs, however, and 
the diffusive-flux case allows greater loss of mass. 

•  Nearly sonic parallel flows result from parallel forces. 
•  The need for more realistic plasma-surface modeling is 

evident. 



Next Steps 
•  Resolve the discrepancy between parallel and serial 

calculations. 
•  Further develop NIMEQ for free-boundary initialization to 

provide more realistic VDE evolution. 
•  Mesh annular external regions that surround the central 

region. 
•  Apply T-dependent thermal conductivity and viscosity 

modeling. 
•  Implement boundary relations that model sheath conditions. 
•  Develop postprocessing to calculate stresses on the wall.  
•  Investigate coupled VDE/kink dynamics in three dimensions. 



Extra Slides 



For other applications, the open-field capability can 
be used to refine equilibria read from other solvers. 

•  Externally generated equilibria are interpolated to a flux-aligned mesh 
using the FLUXGRID code from Glasser/Kruger. 

•  NIMEQ re-solves the equilibrium on that mesh. 

This	  ψ	  distribu-on	  is	  
a	  refinement	  of	  EFIT.	  

Approximately	  aligned	  
mesh	  aids	  Bpol	  tracing.	  

Pressure	  (le?)	  and	  Jφ	  (right)	  show	  H-‐
mode	  pedestal.	  

•  A more sophisticated approach couples FLUXGRID and NIMEQ, traces the 
separatrix, and refines both equilibrium & mesh [King, BAPS 59, 15, BP8.5].  



subject to                                 . 

Computations in the outer vacuum regions 
approximate magnetostatic responses. 

•  The standard approach uses a magnetic potential. 

B =∇χ , ∇2χ = 0 in Rout , n̂ ⋅∇χ = Bnout  on ∂Rout

where χ may be multi-valued in regions that are not topologically 
spherical. 

•  This is convenient in NIMROD, which solves the plasma response in 
terms of B. 

•  Induction from changes in Ip appear through surface-Etang. 
•  Outer-region computations are fast relative to the plasma update. 

•  A given static solution can also be found as the long-time response 
to a diffusion problem.  
∂
∂t
B =ηout∇

2B n̂ ⋅B = Bnout  on ∂Rout


