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Motivation

 Edge modeling with experimental reconstructions can be
corrupted by edge current discontinuity

» This discontinuity can be eliminated by self-consistently
resolving the Grad-Shafranov (GS) equation with scrape-
off layer (SOL) n/T profile gradients

 How does including these gradients affect the underlying
equilibrium?

On NIMROD's GS solver see [Howell and Sovinec, CPC 2014]



Reconstructions typically contain discontinuous
current profiles across the separatrix

 The pressure is assumed to be constant outside the
separatrix

e Current discontinuity is problematic for GS re-solves
and nonlinear edge studies
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Can include SOL region with currents

* The experimental reconstruction doesn't set the gradient of
thermodynamic quantities to zero on the LCFS because they

aren't measured to be zero
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* Technical issues:

- EFIT profiles only extend to LCFS
- How do we extrapolate while minimizing free parameters?
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- Result should be as close to possible to known measurements



We study two reconstruction: high and low
current in SOL.

* Helps isolate effects of SOL current from GS re-solve
o Small current: 160414 @ 3025 ms

- Inter-ELM reconstruction from H-mode shot with ELM
pellet pacing.

- Time selected is last 20% of pellet-trigger inter-ELM
period

e Large current: 145098 @ 1800ms
- QH-mode shot with large edge current

- Near peeling boundary
- Reversed-current discharge (flips sign of J; and V)



Low-current case — use measured SOL
profiles except for T.
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High-current case — use measured SOL
profiles except for T
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Compare each equilibria with four
different cases

Compare 4 different scenarios:

* Mapped

* GS re-solve, no SOL
* S re-solve with SOL

* S re-solve with SOL and PF

. 160414 3025ms -
_ — Bump ftn fit
PF profile --- Fit to value
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SOL cases maintain
fixed current during re-solve
— minor effect on result
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For the low edge-current case, inclusion of
SOL produces similar current
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For high edge-current case, inclusion of SOL
moves LCFS by ~2cm
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Currents (and flows) extend into the divertor.
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: 1.5e+05  « poloidal currents determined by
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Comparison of measurements to NIMROD
fields investigates reliability of final state

Thomson/CER/MSE/coils ‘ EFIT
p/n/T/B(R,Z) y(R,Z2); p/n/T(y)
a B
Comparison GS re-solve

p/n/T/B(R,Z)
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For the low edge-current case, fit to data
improves modestly

Poor agreement outside LCFS Slight mismatch on LCFS location
GS-SOL GS-SOLpf 160414
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For the high edge-current case, the benefits
on including the SOL are mixed

Poor agreement outside LCFS Slight mismatch on LCFS location
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Table summaries of modifications

Low current, 160414

High current, 145098

x?/N mapped GS GS+SOL GS+SOLpf x?/N mapped GS GS+SOL  GS+SOLpf
Thom. 7. 22.3 23.4 4.80 4.15 Thom. T 60.9 61.7 7.77 6.99
Thom. n. 19.4 20.5 4.07 3.33 Thom. n. 2.87 5.22 q4 9@
CER T; 6.98 6.96 6.74 6.84 CER T; 10.2 10.3 9.7 19.
MSE 1.49 1.49 1.46 1.47 MSE 1.14 1.13 1.13 1.13
Mag. Coils 0.61 0.63 0.82 0.70 Mag. Coils 1.65 1.60 457 3.27_D
As mapped GS GS+SOL GS+SOLpf As mapped GS GS+SOL  GS+SOLpf
AI/I 6.95x107° 7.97x10~* 3.22x1077 3.22x10" " AI/Io 9.86x107° 5.46x10~* -3.57x10™" -3.57x 10"
Arg,:e (cm) N/A ref. 0.72 1.07 Argpe (cm) N/A ref. 0.86 .55
Alimas (cm)  N/A ref. 0.35 019  Arimes (cm) N/A ref.  <__2.82 b

* Low-current case: better match to experiment

» High-current case: LCFS motion and BC affect Thomson n, + CER T, and

coil comparisons, respectively.

* How do modifications to equilibrium state affect the mode dynamics in the

high-current case?
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The linear growth rates are largely unaffected by the
inclusion of the SOL current in the high-current case
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Inclusion of SOL currents improves

rate of convergence

Growth Rate (1/s)
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* Convergence effects likely more dramatic for nonlinear evolution of
perturbations over the LCFS, but effect is difficult to quantify
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Fixed boundary condition likely affects
re-solved values at coils

Currently we perform a fixed-boundary GS solve with
the mapped v as the BC

The boundary v is the superposition of the values
resulting from the plasma current and external coils:

y = \Vplasma + \Vcoils

A better solution may be possible with a free-
boundary computation where v ... Is allowed to

change

Free boundary solves have been implemented by C
Sovinec

18



Nonlinear iteration: Converting to approximate-
Newton starts with reorganization.

The fixed-point iteration for nonlinear F(A) and P(A) had been
organized for the linear A* operator.

For fixed-boundary computations, find Aé‘,”l € Ly, such that

k
fR2VQ-V(A’fl+1+AO)dV01= fQ(FF’+MOR2P’) dvol
D D

for all Q€& L, with the superscript k being the iterate label.

d 1 d
. F'=—F(W)=——F(A :
Note that v (P) PPy (A) , for example

Equivalently, one may form a residual vector,

HX -
D

forall «; and update with 6A = —ﬂ_lﬁlfx, M;; = fRzVa,- ‘Va; .
D

k
R*Va;- V(A’,; +Ag ) —a; (FF ¥ MORZP’) ]dVOl



With the residual-based formulation, full and
approximate Newton result with different matrices.

« Formally, Newton’'s method uses the complete Jacobian matrix, and
it changes with the iteration.

M—-M =V, HY

« With NIMEQ, as with other solvers, it is easier to use approximate
Newton iteration.

 Partial derivatives of the nonlinear terms are found via
numerical difference approximation. For example,
0 0 o P'(A+30A)-P'(A-05A)
dA OA 20A

computed at nodes of the expansion and interpolated for the
element computations. The FF’ is treated similarly.

« Also, the approximate differencing considers the separatrix
shape to be held constant.



Initial results are encouraging in that approximate-

Newton substantially reduces iteration.

« Approximate Newton reduces the iteration count in these fixed-boundary
tests with or without B-tracing for distinguishing open and closed flux.
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tracing (centering=0.75 for both).



Summary

Modeling with SOL profiles eliminates edge-current (and flow)
discontinuity

Re-solved solution is consistent with GS equation

Inclusion of SOL current impacts comparisons to experimental
measurements:
— Improves comparison with low SOL current

- Mixed effect on comparison with higher SOL current

Linear rate of convergence on edge modes are improved with SOL
current

- Effect likely more important for nonlinear evolution of
perturbations through the LCFS

Newly developed (C Sovinec) free-boundary and approximate
Newton methods can impact experimental comparisons and
performance through convergence rates



