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• Fusion basics

• The M3D-C1 code
– Finite elements
– Implicit time step
– Flux/potential representation

• Results
– Edge localized modes (ELMs)
– Sawtooth cycles
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• Goal: to keep plasma hot enough 
in steady-state for fusion to occur

• Tokamak: magnetic field forms 
nested toroidal surfaces 
– Particles travel along magnetic 

fields much faster than across fields

Magnetic Fusion Basics
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http://fusionforenergy.europa.eu/understandingfusion/



• How can we heat the plasma and drive electrical 
currents in it?
– Radio frequency wave codes
– CSWPI SciDAC

• How can we minimize small-scale turbulence that 
causes heat to leak out?
– Gyrokinetic codes
– CSPM, GSEP, GPS-TTBP SciDACs

• How can we mitigate large-scale instabilities due to 
pressure gradients and currents?
– Fluid codes
– CEMM SciDAC

Scientific Challenges In Tokamaks
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• Magnetohydrodynamics (MHD) consists of:
– Conservation equations (for both ions and electrons)
– Maxwell’s equations

• “Ideal MHD” excludes dissipative terms

MHD is a Fluid Description of Plasma

Conservation of particles

Conservation of momentum (ions + electrons)

Conservation of momentum (electrons)

Conservation of energy (ions + electrons)

Ampere’s Law (minus displacement current)

Faraday’s Law



Disparate Scales Make MHD Difficult

• Ideal MHD contains a wide range of wave speeds
– Alfvén wave, Slow wave, Fast wave

• Non-Ideal (dissipative) terms introduce new, 
much slower time scales
– Lundquist number = τR/τA~109

• Highly anisotropic thermal conductivity

• Many resonant surfaces and boundary layers
– Require localized regions of high resolution
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M3D-C1 Uses Several Strategies to Improve Efficiency

• High order, C1 finite elements
– C1: field values and derivative continuous everywhere
– Allow up to 4th order weak derivatives

• Unstructured mesh
– ITAPS meshing software
– Higher resolution near boundary layers

• Linear implicit time advance
– Split or unsplit methods
– TOPS solvers (through PETSc)

• Uses flux/potential representation of B and u
– Increases accuracy of stability calculations
– Improves conditioning of matrix



• High-order elements lead to more compact 
matrices

• C1 in all directions
– Allows 4th degree weak derivatives
– Allows efficient use of flux/potential representation

High-Order C1 Finite Elements

• Elements are a tensor product
– Poloidally: 2D (triangular) 

reduced quintic elements
– Toroidally: 1D cubic Hermite

elements



Hermite Elements in Toroidal Direction Yields 
Block Cyclic Tridiagonal Matrix Structure

• Each plane yields a diagonal block
– Only neighboring planes are coupled
– Coupling is much stronger within planes than among planes 

(block diagonal dominant)

• Block-Jacobi preconditioning is effective
– Diagonal block are factorized directly using SuperLU or MUMPS
– This method is now available in PETSc (dev).  Thanks H. Zhang!



Implicit Time Steps in M3D-C1

• Two time-stepping methods are implemented 
– θ-implicit method (Crank-Nicolson)
– Split time step

• θ-implicit method:
– Excellent convergence (with dt) properties
– Very poorly conditioned matrices 

• Split time step:
– Smaller, better-conditioned matrices



Unsplit Time Step

• Consider the simple equations:

• Evaluate u and B at the θ-advanced time, and discretize:

• Universally stable, second-order accurate when θ=½
(Crank-Nicolson)

• Matrix not diagonally dominant at large dt
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Split Time Step Obtained Via 
Block Gaussian Elimination

• Use 2nd equation to eliminate Bn+1 from 1st:

• Matrix is lower-triangular 1st equation can 
be solved independently of second
– Problem has been cut in half!
– Same accuracy, stability properties as unsplit 

method
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Split Method Scales Much Better Than Unsplit

• Mesh resolution increased in all dimensions
• Core count increased accordingly
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Potential Representation

• In neutral fluids, compression is highly stabilizing
– The most unstable mode will generally be 

incompressible
– Discretization schemes not able to represent exactly 

incompressible modes will overestimate stability
– This choice decouples U from compressible motion:

• In a tokamak, compression of the magnetic field is 
highly stabilizing
– This choice decouples U from compression of the 

axisymmetric toroidal field
v = R2∇U × ∇ϕ + R2Ω∇ϕ + R−2∇⊥χ

v = ∇U × ∇ϕ + R2Ω∇ϕ + ∇χ



Vector Potential is Used to Represent Magnetic Field

• B is manifestly divergence-free
• B is represented using only two scalar fields

• Using subsets of scalar fields give physically 
meaningful systems
– (ψ, U) = “2-Field reduced MHD” (strong toroidal field, 

low pressure)
– (ψ, U, f, Ω) = “4-Field reduced MHD” (low pressure)

• Downside: requires high-order derivatives
– Obviated by use of C1 elements

A = R2∇ϕ × ∇f +ψ∇ϕ
B = ∇ × A

J.A. Breslau, N.M. Ferraro, and S.C. Jardin. Phys. Plasmas 16:092503 (2009)



Annihilation Operators Decouple Waves

• Scalar equations are obtained from split step velocity 
vector equation via three “annihilation” operators:

• Since k|| is small in tokamaks, matrix is nearly diagonal
– The three waves are approximately decoupled
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Diagonal Blocks Are Relatively Well-Conditioned

• Different waves are 
weakly coupled

• The condition number 
of each block is much 
smaller than the 
condition number of 
the full matrix
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Edge Localized Modes (ELMs)

• ELMs are periodic ejections of particles 
and energy

• Thought to be instabilities driven by 
currents and pressure gradients at the 
plasma edge

• May cause significant erosion in full-scale 
fusion reactor

P.B. Snyder, et al.  Nucl. Fusion 47:961 (2007)• Questions:
– Are non-ideal effects important to stability?  When?
– How is energy deposited on wall?

• Eigenfunction is difficult to calculate
– Sharp edge gradients
– Singularity at x-point
– Realistically small dissipation makes system extremely stiff



Nonlinear ELM Simulations Underway to 
Elucidate Energy Deposition

Calculated with realistic η, and μ=κ=0!



Linear ELM Eigenfunctions Obtained For 
Realistic Equilbria

N.M. Ferraro, S.C. Jardin, P.B. Snyder.  Phys Plasmas 17:102508 (2010)

• Non-ideal stability 
analysis of a 
realistic equilibrium 
(like this one) has 
not been 
successful until 
recently

• Non-ideal effects 
are found to be 
important:
– Edge resistivity
– Gyroviscosity



Sawtooth Cycles

• Tokamaks frequently exhibit “Sawtooth” cycles:
– Heating causes core pressure to rise slowly
– Once stability threshold is passed, core pressure collapses 

rapidly

• Questions:
– Where is the stability threshold?
– How big is the collapse?

• Disparate timescales make this cycle hard to simulate
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Sawtooth Causes Flattening of Pressure Profile

Movie made with VisIt
Special thanks to Allen Sanderson



Sawtooth Changes Magnetic Topology

• Instability causes magnetic axis to shift and be 
replaced by new axis



Summary

• Several strategies are used to improve efficiency and 
matrix conditioning:
– High-order elements
– Mesh packing
– Split implicit time step
– Flux/potential representation; annihilation operators
– Block-Jacobi preconditioning

• M3D-C1 is a collaborative effort that makes significant 
use of:  
– Flexible Mesh DataBase (ITAPS)
– PETSc (TOPS)
– SuperLU (X. Li), MUMPS, GMRES

• M3D-C1 has already yielded new physics results in areas 
of significant importance to magnetic fusion energy  



Extra Slides



Simple Test: 1D Resistive Layer

• Simple equilibrium with one mode-rational surface
• Width of boundary layer determined by resistivity

– η=10-9,  Δ ~η⅓



Simple Test: 1D Resistive Layer

• High-order elements give much better 
accuracy for a given solution time
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