Sawtooth Reference	^{year} title	T/C/E	n Geom	resolution	L/N	model	result
Eriksson and Wahlberg, Phys. Plasmas, 9 1606	2002 Effect of co triangularity ellipticity or stability lim ideal interna mode in a t	r and n the it of the al kink	1 ^T		L	Ideal MHD	The effect of combined positive ellipticity and triangularity is stabilizing. This extends the work of Wahlberg, Phys. Plasmas 5, 1387 (1998)
Huysmans, Hender, Hawkes, Litaudon, Submitted to Phys. Rev. Lett	2001 MHD Stability of Tokamak Scen Reversed Cent an explanation Current Hole	arios with tral Current:	0 C	0/0 and 0/1 only	QL	finite beta three- field reduced MHD	simple model with only 2-modes qualitatively agrees with data
Hawkes, N.C. et al, PRL 87 115001	2001 Observation of Current Density Core of JET Di with Lower Hyb and Current Dr	y in the ischarges prid Heating	0 C	-			Current ramping and LHCD produce a region of zero current density, implying the existence of a physical mechanism preventing it from becoming negative.
Reimerdes, et al, Plasma Phys. Control. Fusion 42 629	2000 Effect of triang elongated plase on the sawtoot	ma shape					Experiments were done on TCV to determine the dependence of the sawtooth period and amplitude on the shape of the poloidal plasma cross section. Relation to ideal MHD theory.
Sugiyama and Park, Phys. Plasmas, 7 4644	2000 A nonlinear two model for toroid	-	1 C	S=3x10 ⁴	Ν	two-fluid MHD	Ion diamagnetic drift stabilizes 1/1 mode, explained due to flow pattern
Nishimura, Callen, and Hegna, Phys. Plasma 6 4685	1999 Onset of high-r modes during t sawtooth crash	okamak	1 T	500/151		finite beta, three- field reduced MHD	at high β , 1/1 mode induces unstable high-n ballooning modes which induce stochasticity and lead to incomplete reconnection
Hastie RJ, Astrophysics and Space Science 256 177	1998 Sawtooth Insta Tokamak Plasr			-			not in PPPL library
Wahlberg, Phys. Of Plasmas, 5 1387	1998 Analytical stabi condition for th m=n=1 kink mo toroidal plasma cross section	e ideal ode in a					Ellipticity has a strong destabilizing effect on the kink mode. Effects of triangularity not considered.

Aydemir, A, PRL 78 4406	1997 Nonlinear m=1 Mode and Fast Reconnection in Collisional Plasmas	С	1 C	dynamic	N	low-β reduced two field MHD	 exponential nonlinear growth (but slower than linear)
Lutjens and Luciani, Phys. Plasmas 4 4192	1997 Stability thresholds for ballooning modes driven by high β internal kinks	С	1 T	??	QI	_ full MHD	The nonlinear destabilization described in [Park,1995] is looked at for a more general class of parameters. Nonlinear destabilization occurs if the initial equilibria is close to marginal stability for the n>3 modes.
Wang and Bhattachargee, Phys.Plasmas 4 1173	1997 Comment on "Collisionles m=1 reconnection in tokamaks"	s T	1	-			Rodgers and Zakharov 1996 paper citing explosive growth due to generalized Ohm's law agrees with 1993 and 1995 W&B papers and with Aydemir.
Rogers and Zakharov, Phys. Plasmas 4 1175	1997 Response to "Comment on 'Collisionless m=1 reconnection in tokamaks'	Т	1	-			disagree with equation used by W&B linking the poloidal flow speed along the reconnection layer to the plasma pressure
Chang, Park, Fredrickson, et al. PRL 77 3553	1996 Off-Axis Sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR	E/C	1 C	S=105-6	N	resistive MHD	2-types of off-axis sawtooth when qmin crosses 2 due to double-tearing: off-axis and on-axis. Simulation of off-axis. Time-scales similar to q=1 sawtooth.
Nagayama, McGuire, Bitter, et al, Phys. Plasmas 3 1647	1996 Tomography of full sawtooth crashes on TFTR	E					Reconnection is 3-D, localized on bad curvature side. Experimental results do not agree with 2D models. Q-profile does not change during crash
Nagayama, G.Taylor, M.Yamada, et al	1996 ECE Image reconstructior of partial sawtooth crashe in Ohmic Plasmas			-			Partial sawteeth sometimes observed when qa < 3. Caused by (2,2) or (3,3) mode. The (1,1) mode normally occurs after the partial crash.
Porcelli, et al, Plasma Phys. Control. Fusion 38 2163	1996 Model for the sawtooth period and amplitude	Т					A sawtooth model for ITER is presented. Crash is triggered by m=1 mode driven by MHD, high energy particles, and thermal trapped particles. Kadomtsev or incomplete reconnection.

Rodgers and Zakharov, Phys. Plas. 3 2411	1996 Collisionless m=1 reconnection in tokamaks	T/C	1 Slab 335/261	Ν	two-field, two-fluid, reduced	fast nonlinear growth in early stage of nonlinear reconnection
Haas and Thyagaraja, Plasma Phys. Controlled Fusion 37 415	1995 Turbulence and the nonlinear dynamics of sawteeth in tokamaks	Т			simple model equations	Turbulence relaxation model keeps q<1 and fixed.
Park, Fredrickson, Janos, et al, Phys. Rev. Lett 75 1763	1995 High-β Disruption in Tokamaks	С	Т	N	resistive MHD, but not entirely self- consistent	ideal (1,1) saturated state causes toroidally localized high-n ballooning mode produces local pressure bulge which develops into disruption
Rogers and Zakharov, Phys. Plasmas 2 3420	1995 Nonlinear ω* stabilization of the m=1 mode in tokamaks	T/C	1 Slab		3-field, two fluid reduced	m=1 mode with $q(0) < 1$ can be linearly stabilized by w [*] . Regimes that are linearly unstable can be non-linearly stable due to w [*] effects, with non- singular current layer.
Soltwisch and Koslowski, Plasma Phys. Controlled Fusion 37 667	1995 Sawtooth modulation of the poloidal field in TEXTOR under ohmic heating conditions	E				In reproducible ohmic plasmas, $q0 = 0.73$ and $dq0 = 0.06$ during the ramp. Poloidal field perturbation localized at the large major radius side of the q=1 surface. May agree with [Park,1991]
Wang and Bhattachargee, Phys Plasmas 2 171	1995 Nonlinear dynamics of the m=1 kink-tearing instability in a modified MHD model		С		3-field, two fluid reduced	Electron pressure gradients can cause near- explosive growth in the nonlinear regime of a m=1 island, followed by a rapid decay phase. Model could explain fast crash times, sudden onset, and incomplete reconnection.
Biskamp and Drake, Phys. Rev. Lett 73 971	1994 Dynamics of the Sawtooth Collapse in Tokamak plasmas	C	1 C	N	2-fluid reduced MHD with electron inertia and viscosity	fast reconnection driven by electron inertia occurs in two steps. A fast Kadomtsev-type reconnection is followed by a rapid reformation of a $q0 < 1$ configuration, driven by the strong flows.
Gimblett and Hastie	1994 Calculation of the post- crash state and 1 1/2D simulation of sawtooth cycles	С	1 C	N	1 1/2D model of sawtooth	resistive interchange model keeps q(0) < 1 during the sawtooth cycle
Levinton, Zakharov, Batha, et al, Phys Rev. Lett 72 2895	1994 Stabilization and onset of sawteeth in TFTR	E	1			In TFTR q(0) < 1 , normally, but sawteeth are not always present. Small change during crash implying full reconnection does not occur. Theory predicts ideally unstable. Presence or absence of sawteeth agrees well with ω^* criteria in [Zakharov,1993]

Rice and Hooper, Nucl Fusion 34 1	1994 Poloidal field measurements during sawteeth and disruption on MTX	E			Polarimeter measurements on MTX show $q_0 \sim 0.7$ -0.85 during sawteeth, with $\Delta q_0 \sim 0.01$ during the sawtooth
Yamada, Levinton, Pomphrey, Phys. Plasma 1 3269	1994 Investigation of magnetic reconnection during a sawtooth crash in a high temperature tokamak plasma	_			Electron temperature flattens in ~ 200 ms, but q- profile hardly changes. $q0 = 0.7$, $Dq0 < 0.1$, observations agree with Baty, et al (1993)
Biskamp and Drake, Proceedings of the 15th IAEA Conference, Seville, IAEA-CN 60/D-7, Vol 3, p261	1994 Dynamics of the Sawtoc Collapse in Tokamak plasmas	th C			Same basic story as in Biskamp and Drake, PRL 73 971 (1994)
Zakharov, Levinton, Batha, et al, Proceedings of the 15th IAEA, Seville, IAEA-CN-60/D- 19, Vol 3, p 407	1994 Onset and stabilization of sawtooth oscillations in tokamaks	of E/T			for finite amplitude perturbations, the influence of the ideal mode disappears and the criteria of ω^* - stabilization of the collisionless m=1 reconnection mode determines the sawtooth-free operational space in tokamaks
Baty, Luciani, and Bussac, Phys. Fluids B 5 1213	1993 Field line stochasticity during the m=1 reconnection	C 1 T	S=10 ⁵ , N 200x10x11	resistive MHD	Toroidal modulation of the m=1 resistive mode drives sidebands, and different magnetic island chains with m up to 10 overlap, leading to an annular stochastic region. This can expel the electron temperature in less than 100 microsec, removing the drive for the instability, and the central core could be pushed back without change in the value of q(0).
Levinton, Batha, Yamada, Zarnstorff Phys Fluids B 5 2554	1993 q-profile measurements TFTR	in			q0 = 0.7, Dq0 < 0.1 during crash. q=1 radius changes less than 1 cm. Some discharges with same q0 < 1 have 1,1 activity but no sawteeth
Ottaviani and Porcelli, Phys. Rev. Lett. 71 , 3802	1993 Nonlinear collisionless magnetic reconnection	C 1 slab	1026/64 N		quasi-explosive time behavior in early nonlinear a stage with formation of current density sublayer narrower than the skin depth.
Waelbroeck, Phys. Rev. Lett. 70 3259	1993 Onset of the sawtooth crash	T 1 C		low- β reduced two-field MHD	tearing vs kink-tearing: gives theory basis why sawteeth in toroidal geometry fundamentally different than in cylindrical

Wang and Bhattachargee, Phys. Rev. Lett. 70 , 1627	1993 Nonlinear dynamics of the m=1 instability and fast sawtooth collapse in high- temperature plasmas	-	С		N	four-field model	analytical model explaining many features of [Aydemir,1992] Explosive growth followed by rapid decay are shown to follow from Hall term. Electron inertia not important
Wolf, O'Rourke, Edwards et al, Nucl Fusion 33 663	1993 Comparison of poloidal field measurements on JET	Е					Measurements of q0 on JET by both Faraday and MSE agree and show q0 \sim 0.7-0.85 throughout the sawtooth cycle: partial reconnection does occur
Wroblewski, Phys Rev. Lett, 71 859	1993 Evidence of the Complete Magnetic Reconnection during a sawtooth collapse in a tokamak						In DIII, q_0 is measured by MSE to be near 1.0, and $\Delta q_0 = 0.06$. [Wroblewski,1991] may be wrong
Zakharov,Rodgers, Migliuolo, Phys. Fl. B 5 , 2498	1993 The theory of the early nonlinear stage of m=1 reconnection in tokamaks	Т	1 C		L/ N	three-field model	Hall term dominates in Ohm's law. Gives fast experimental crash times. Density and temperature gradients are stabilizing. (criteria given) Nonlinear cancellation of the w* stabilization is possible triggering mechanism.
Aydemir, A, Phys.Fluids B 4 3469 (1992)	1992 Nonlinear studies of m=1 modes in high-temperature plasmas	•	1 C	600/256	Ν	four-field reduced model with hyperresistivity	accelerated nonlinear growth with 2-fluid physics. Y-point becomes X-point. Electron inertia probably not essential. Complete reconnection.
Coppi and Detragiache, Phys. Lett A 168 59	1992 Magnetic topology transitions in collisionless plasmas	Т					It is shown that collisionless processes can lead to fast sawtooth crash times, but only if the growth rate exceeds the drift frequencies.
Kolesnichenko, Yakovenko, et al, Phys Rev Lett 68 3881	1992 Sawtooth Oscillations with the central safety factor, q0, below unity	Τ	1 C			simple ideal MHD conservation laws	cartoons showing it may be possible to have reconnection and keep q0 < 1
Lutjens, et al, Nuclear Fusion 32 1625	1992 Ideal MHD stability of internal kinks in circular and shaped tokamaks	С	1 T		L	ideal MHD	The internal kink is significantly destabilized by ellipticity.
Nagayama and Edwards, Rev. Sci. Instr 63 4757	1992 Rotational soft x-ray tomography of noncircular tokamak plasmas	E					Pictures of soft X-ray signals in slow sawtooth crash in JET. Identical in structure to TFTR (Nagayama,1991)
Rice, Rev. Sci. Instrum 63 5002	1992 Fifteen chord FIR polarimetry system on MTX	Е					on MTX q_0 remains at .78 +- 0.08 during sawtooth oscillations.

Soltwisch H Plasma Phys. Control. Fusion 34 1669 (Review Article)	1992 Current Density Measurements in Tokamak Devices	E		Confusing results of q_0 =1 reported on ATC, ASDEX, TCA. Low values of $q_0 < 0.8$ reported on PBX-M, DIII, TEXTOR, JET, PDX, TOKAPOLE II.
Zakharov,Rodgers, and Coppi, Phys Fluids B 4 , 3285	1992 Two-fluid MHD descripti of the internal kink mode		L	The scale length for electron and ions decouple. For the ions, the scale length is $\rho_S = C_S / \Omega_{ci}$. 2-fluid equations agree well with kinetic studies.
Aydemir, Phys. Fluids B 3 , 3025	1991 Linear studies of m=1 modes in high-temperatu plasmas with a four-field model		L four-field reduced model with finite electron inertia	The four-field model reproduces dispersion relations obtained with more complete kinetic treatments.
Berk, Mahajan, Zhang, Phys. Fluids B 3 351	1991 m=1 kink mode for layer widths comparable to the ion Larmor radius	•	FLR MHD	strong dependence of stability result on the local shear at the q=1 surface
Biskamp, Phys. Fluids B 3 , 3353 (1991)	1991 Algebraic nonlinear grow of the resistive kink instability	wth T 1 C	N reduced two-field resistive MHD	geometrical modifications to slab Sweet-Parker theory give increased resistive growth rates.
Drake and Kleva, Phys. Rev. Lett 66 1458	1991 Collisionless reconnection and the Sawtooth Crash		compressible MH	Electron inertia by itself cannot produce fast ID reconnection times. However, the addition of a ia anomalous current diffusion term, due to instability of the current layer, can lead to fast reconnection.
Lichtenberg, Itoh, et al, Nucl. Fusion 32, 495	1991 The role of stochasticity sawtooth oscillations	in T		Stochastization of field lines , resulting from the interaction of the 1,1 helical mode with other harmonics plays an important role in the sawtooth. It leads to enhanced values of electron and ion viscosity and thermal conduction.
Nagayama, McGuire, Bitter, et al, Phys. Rev. Lett 67 3527	1991 Analysis of Sawtooth Oscillations using simultaneous measurement of electror cyclotron emission imaging and X-Ray tomography on TFTR	E	MHD + stochasticity enhanced transport coefficients	Analysis of temperature data indicate a full thermal reconnection, but no magnetic measurements were used and thus nothing can be said about q0 or flux surfaces.

O.Rourke J Plasma Phys. Control. Fusion 33 289	1991 The change in the safety factor at a sawtooth collapse	Е					in JET, $q_0 = 0.7$ while the change during the sawtooth is $\Delta q_0 < .05$. Hence, complete reconnection of the poloidal flux does not take place.
Park, Monticello, Fredrickson, and McGuire Phys. Fluids B 3 507	1991 Finite pressure effects or sawtooth oscillations	C	1 T	S=3x105,200 radial	N	resistive MHD	finite p0 or shaping cause a toroidal bulge at the large R side, causing an annular stochastic region outside q=1. However, computes full Kadomtsev reconnection
Porcelli, Plasma Phys Controlled Fusion, 33 ,1601	1991 Fast Particle Stabilization	Т					The stabilization of plasma macroscopic instabilities by high energy particles is shown to be a consequence of the conservation of the third adiabatic invariant.
Porcelli, Phys. Rev. Lett. 66 425	1991 Collisionless m=1 tearing mode	Т	1 slab		L	fluid electrons with inertia	In the collisionless regime, magnetic reconnection occurs because of finite electron inertia, and the ion gyroradius replaces the skin depth as the width of the mode boundary layer. Fast growth rates ~ 50-100ms are found for JET parameters
Wesson, Edwards, Granetz, Nucl. Fus 31 111	1991 Spontaneous m=1 instability in the JET sawtooth collapse	E					Model in [Jahns,1978] or [Aydemir,1989] does not describe JET sawteeth in either the time scale, flow pattern, or time-development of the growth rate. Sudden appearance of the fast growth rate cannot be understood by standard linear theory.
Wroblewski and Lao, Phys Fluids B 3 2877	1991 Determination of the safe factor in sawtoothing discharges in DIII-D	ty E					Here it is reported that $q_0 < 1$ during sawtooth discharges, and $\Delta q_0 \sim .05$. However, this is somewhat retracted in a later article by the same author[1993]
Aydemir, Phys. Fluids B 2 2135	1990 MHD modes driven by anomalous electron viscosity and their role in fast sawtooth crashes	С	1 T	S=108, 765/48	Ν	resistive MHD + hyperresistivity	anomalous electron viscosity can lead to faster growth rates for the crash phase, in approximate agreement with experiment. However, still computes full reconnection
Coppi, et al, Phys Fluids B 2 927	1990 Global modes and high- energy particles in ignited plasmas	Т					Fusion-produced alpha particles with trapped orbits can stabilize m=1 internal modes in an ignited plasma. There are stable and unstable regimes.
Janicki, C., et al., Nucl. Fusion 30 950	1990 Tomographic analysis of compound sawteeth on th TDV	_					High resolution tomographic analysis of soft X-ray emission show details of compound sawtooth, which indicates partial reconnection. Time scales too fast for Kadomtsev.

Park, W. and Monticello, D. Nucl. Fus 30 2413 (1990)	1990 Sawtooth Oscillations in Tokamaks	С	1 T	S=106	Ν	resistive MHD	neoclassical resistivity, complete reconnection, $\Delta q_{0}{=}0.2, \ t_{ST} \sim 9 R^2 T^{3/2}/Zeff$
Rogister,et al, Phys. Fluids B 2 953	1990 The mechanism of sawtooth precursors and sawtooth relaxations	Т	1		L	resistive MHD	It is argued that delta-prime for the m=1 depends sensitively on the shear and current density at the q=1 surface. This sensitivity of growth rate to plasma parameters could account for the sawtooth crash.
Wesson, Nucl Fusion 30 2545	1990 Sawtooth reconnection	Т	1 C			resistive MHD + electron inertia	The electron inertia term in ohm's law must be kept in the reconnection layer. Using this in a modified Sweet-Parker theory shows it will increase the predicted crash time and layer width in JET by 10.
Aydemir, Wiley, and Ross Phys. Fluids B 1 774	1989 Toroidal studies of sawtooth oscillations in tokamaks	С	1 T	S=105-6, 100x4x11	Ν	resistive MHD, eta depends on p, constant kappa.	full reconnection, transition from stable to unstable state with growing n=1 mode half-way through the cycle. Unstable mode grows for 50% of sawtooth period. Shows development and healing of stochastic regions. Note later paper by Wesson[1991] casts doubt on this work.
Campbell, et al in Plasma Phys and CNFR, Nice, 1988, IAEA Vienna Vol I, p377	1989 Sawtooth activity and current density profiles in JET	Е					Direct measurement of the q-profile show q(0) is below unity in sawtoothing plasmas and may be 0.6-0.8 during the stable periods.
Levinton, et al Phys Rev. Lett 63 2060	1989 Magnetic field pitch-angle measurements in PBX-M using MSE	Е					Measurements on PBX-M show q(0)=0.86 in ohmic and q(0)=0.77 in NBI plasmas. These are supported by 2 other measurements. In addition, q® is flat out to about a/3 and well blow unity.
Moyer, Goetz, et al, Phys. Fluids B 1 2139	1989 q measurements during sawtooth oscillations in a low q tokamak	Е					q(0) in TOKAPOLE-II is 0.7 during a sawtooth oscillation [note it is not clear if they correctly took plasma shape into account]
Pegorado, Porcelli, et al, IAEA, Niece, 1988, Vol 2, p243, IAEA-CN-50/D-IV-6	1989 Theory of sawtooth stabilization in the presence of energetic ions	T					Energetic particles affect the stability of internal kink modes and can lead to plasma regimes where both sawtooth and fishbone oscillations are suppressed.

Pegoraro, Procelli, et al, Phys. Fluids B 1 364	1989 Internal kink modes in the ion-kinetic regime	Т	1	slab	L	collisional electrons, collisionlesss ions	When the width of the singular layer is determined by the mean ion gyroradius, the growth rates are larger than the corresponding ones from fluid theory, and diamagnetic stabilization is weaker.
Sato, et al, Phys. Rev. Lett 63 528	1989 Supersaturation and nonlinear crash of tokamal sawtooth oscillations	k C	1 T	S=3x104 in center ??x??x??	Ν	resistive MHD	high beta (10%) plasma undergoes kink instability when $q(0)=1$. Then, second axis forms and $q(0)$ falls to 0.8. Finally, fast ideal time scale reconnection occurs bring $q(0)$ to 1.0. Claim that compressibility is important
Snider, Phys. Fluids B 1 404	1989 Modification of sawteeth by second harmonic EC heating	Е					A factor of 6 increase in sawtooth period is observed when ECE heating is localized at the q=1 surface.
Vlad and Bondeson, Nucl. Fusion 29 1139	1989 Numerical simulations of sawteeth in tokamaks	С	1 C	S = 107, 200x4	Ν	low-β reduced two- field MHD + temperature equ.	- "Self-consistent" calculation leads to very flat central q profiles with q(0)=1. This q profiles allows a resistive mode to turn on quickly and with a high growth rate. Collapse scales weaker than $S^{1/2}$ -more like $S^{1/3}$. Results depend strongly on ratio of viscosity to conductivity. $\Delta q(0)$ decreases with S.
Waelbroeck, Phys. Fluids B 1 2372 (1989)	1989 Current sheets and nonlinear growth of the m=1 kink-tearing mode	Т	1 C		N	low-β reduced two- field MHD	 shows theoretical basis for current-sheet singularity and rapid reconnection
Westerhof, E. et al., Nucl Fusion 29 1056	1989 Observations of sawtooth postcursor oscillations in JET and their bearing on the nature of the sawtooth collapse	_					Radial Te profile measured with high time resolution with ECE. Shows a m=1 island cold region and displaced hot plasma core. Conclusion that partial and full collapses are related, but with different nonlinear evolution.
Aydemir, Phys. Rev Lett 59 649	1988 Mechanism for Rapid Sawtooth Crashes in Tokamaks	С	1 T	??x??x??	Ν	resistive MHD	Ideal instabilities exist for low shear systems even when $q(0) > 1$. Very sensitive to q' or a off-axis minimum near 1. Speculated to lead to fast crash times.
Campbell, et al, Phys. Rev. Lett 60 2148	1988 Stabilization of sawteeth with additional heating in the JET tokamak	Е					The sawtooth instability is suppressed for periods up to 1.6 s when NBI is added. Not clear if it is due to $q(0) > 1$, or other stabilization of the 1/1 mode.

Charlton, Carreras, Holmes, et al, Phys. Fluids, 31 347	1988 Tokamak m=1 MHD calculations in toroidal geometry using a full set of nonlinear resistive MHD equations	C	1 T	S=105, ??x??x??	Ν	resistive MHD with "incompressible" or "pressure convection" equation of state	nonlinear results are sketchy, but depend on S, aspect ratio, and equation of state. Incomplete reconnection can be found for "pressure convection", A=4. However, there is a warning that this is valid only for high beta. Transition from resistive kink to resistive tearing at small A and large S.
Coppi, Hastie, Migliuolo, et al	1988 Suppression of Internal Plasma Oscillations by Trapped High Energy Nuclei	Т				kinetic MHD	sawteeth are shown to be stabilized by magnetically trapped energetic nuclei
Goedheer and Westerhof Nucl. Fusion 28 565	1988 Sawteeth, Transport and electron cyclotron heating in T-10	Т	1 1D	model	-	1D transport modeling	It is shown that a simple "turbulent model" for sawtooth evolution fits the data much better than the "reconnection model" [Jahns,1978]
H. Soltwisch, Rev. Sci. Instrum 59 1599	1988 Measurement of curren density changes during sawtooth activity in a tokamak by FIR	_					The axial current density is measured to have an average of q(0)=0.77 with a modulation amplitude of about 8%. This precludes the classical Kadomtsev model.
Wroblewski, Huang, and Moos, Phys. Rev. Lett. 61 1724	1988 Determination of the poloidal magnetic field profiles in a tokamak by polarization spectroscopy 	E					The on axis safety factor on TEXT is found to be close to 1.0. There is a decoupling of the current and temperature profiles and a flat current density profile in the center of the discharge. Note this contradicts [West,1987]
Hastie, Hender, Carreras, et al, Phys. Fluids 30 1756	1987 Stability of ideal and resistive internal kink modes in toroidal geometre	C y	1 T		L	ideal and resistive MHD	Results are presented on the stability of ideal and resistive m=1 internal modes near marginal stability.
Kleva, et al, Phys. Fluids 30 2119 (1987)	1987 The fast crash of the central temperature during sawteeth in tokamaks.	C	1 C	40x400	Ν	two-field reduced MHD	It is postulated that $q(r)$ first falls below one at finite radius r_s , while $q(0)$ stays near 1. This leads to "ideal" timescale modes and fast crashes.
McGuire,K. et al, in Plasma Physics and Controlled Nuclear Fusion research 1986 (Proc. 11th Int. Conf. Kyoto,) Vol. 1, IAEA, 421	1987 Coherent and turbulent fluctuations in TFTR	E					three types of sawtooth activity in TFTR: simple, small, and compound. Not explained by Kadomtsev model.

Park, Monticello, and Chu, Phys Fluids 30 , 285	1987 Sawtooth stabilization through island pressure enhancement	С	1 C	N	helical compressible resistive MHD equations	The m=1 mode can saturate when the pressure inside the magnetic island is heated and becomes greater than that of the original core plasma
Izzo R, Monticello DA; Stodiek W, Park W.	1987 Stochasticity and the m= mode in tokamaks	1 C	1			
Soltwisch, Stodiek, et al, IAEA Kyoto Vol 1 p263	A 1987 Current density profiles i the TEXTOR tokamak	ηE				The central safety factor in TEXTOR is measured by Faraday Rotation to be as low as 2/3.
Wesson et al, in Plasma Physics and Controlled Nuclear Fusion research 1986 (Proc. 11th Int. Conf. Kyoto,) Vol. 2, IAEA, 3	1987 Sawtooth Oscillations	С	1 C	Ν	cylindrical, incompressible	Sawtooth oscillations may be quasi-interchange modes, but this requires very flat q profiles with q(0)>1. Does not explain rapid onset of collapse.
West, et al, Phys Rev Lett 58 2758	1987 Measurement of the rotational transform at the axis of a tokamak	e B				q(0) in TEXT is measured to be 0.7-0.8. Note this is later contradicted in [Wroblewski,1988]
Biskamp, Phys. Fluids 29 , 1520	1987 Magnetic reconnection vi current sheets	a C	1 C	Ν	two-field reduced MHD	The current sheet at the singular surface can itself become unstable to tearing modes.
Campbell D. J. et al Nucl. Fusion 26 1085	1986 Sawtooth activity in ohmically heated JET plasmas	Е				JET sawtooth do not agree with Kadomtsev model: No precursor for collapse of compound sawteeth. Crash time too fast
Denton, Drake, Kleva, Boyd, Phys. Rev. Lett. 56 2477	1986 Skin currents and compound sawteeth in tokamaks	С	1 C		two-field reduced MHD with temperature equ.	if the thermal conductivity is small near the axis and increases outward, q(0) stays near 1 but falls below 1 at a finite radius. This leads to both normal and compound sawteeth.
Edwards, Campbell, et al, Phys. Rev. Lett 57 210	1986 Rapid collapse of a plasma sawtooth oscillation in the JET tokamak	E				The central hot region in JET collapses in about 100 microsec, with a rapid transition to a configuration with poloidal symmetry. Does not agree with Kadomtsev model, but may agree with Wesson,1986
Hazeltine, Meiss, Morrison Phys Fluids 29 1633	1986 Analytic theory of the nonlinear m=1 tearing mode	Т	1 C		two-field reduced MHD	The m=1 tearing mode is shown to continue to grow exponentially well into the nonlinear regime, in contrast to the slow growth of the m>1 modes.
Wesson, J. Pl. Phys. Control. Fus. 28 243	1986 Sawtooth oscillations	Т	1 C		ideal MHD	It is suggested that if q is flat in the center, just above 1, and falls below 1 at a finite radius, a fast sawtooth crash can occur.

Park, Monticello,White., Phys. Fluids 27 137	1985 Reconnection rates of magnetic fields including the effects of viscosity	С	1 C	S=107, 200x15	N	2D 2-field reduced MHD with scalar resistivity and viscosity	numerical reconnection rate agrees with modified Sweet-Parker when viscosity is large enough. When viscosity is small, reconnection is intermittent or unstable to higher m modes.
Dubois, Pecqet, and Reverdin, Nucl. Fusion 23 147	1984 Internal Disruptions in the TFR Tokamak: A phenomenological Analysis	E					Detailed analysis of high-speed X-ray data of sawteeth show it does not agree with the total reconnection [Kadomtsev] model. They propose a model where a "turbulent" region grows up around the island at the q=1 surface.
Lichtenberg, Nuclear Fusion 24 1277	1984 Stochasticity as the mechanism for the disruptive phase of the m=1 tokamak oscillations	Т					The disruptive phase of the sawtooth can be caused by the onset of stochasticity caused by the (1,1) mode interacting with the (1,0) toroidal effects.
Manickam, Nuclear Fusion, 24 595	1984 Stability of n=1 internal modes in tokamaks	С	1 T		L	ideal MHD	The internal kink can be stable in a torus at sufficiently low pressure. Ellipticity is destabilizing, and triangularity is stabilizing.
Osborne, Dexter, and Prager, Phys. Rev. Lett 49 734	1984 Discharges with Safety Factor q(0) < 1 in a Noncircular Tokamak	Е					TOKAPOLE II discharges have $q(0) = 0.6$ as directly measured with magnetic probes. Sawtooth oscillations are present, but $q(0)$ remain stationary and below 1 during the sawtooth.
Parail, Pereverzev, Sov. J. Plasma Phys. 6 14	1983 Internal disruption in a tokamak	Т	1				Variation of the Kadomtsev model with the q-profile non-monotonic. Claims to solve the "trigger" problem which Kadomtsev does not.
Basu and Coppi, Phys. Fluids 24 465	1982 Theory of m=1 modes in collisionless plasmas.	Т	1 C				Finite electron mass can destabilize otherwise stable ideal m=1 modes. But a temperature gradient can stabilize. Reconnection layers of the order of the ion gyroradius.
Park, Monticello, White, Jardin Nucl. Fus. 20 1181	1981 Nonlinear saturation of the internal kink mode	C	1 C	350/30		Ideal MHD	Current singularity forms in ideal MHD
McGuire, Robinson, Nucl. Fus. 19 505	1980 Sawtooth oscillations in a small tokamak	Е					Sawteeth are present in TOSCA with a repetition time of 0.12ms. Comparison with other tokamaks indicate the sawtooth period scales like a reconnection time.

Jahns, Soler, Waddell, et al, Nucl Fus. 18 609	1979 Internal Disruptions in Tokamaks	Т					A model is put forward for the internal disruption and compared with ORMAC data. $q(0)$ drops below 1, tearing mode=> magnetic reconnection=> $q(0) > 1$
Ara, Basu, Coppi, et al, Ann. Phys 112 443	1978 Magnetic reconnection and m=1 oscillations in a current carrying plasma	Т	1 C		L		gives general theory for linear kink in a cylinder, including ideal, resistive, FLR, electron drift wave, ion-ion collisions. Refers to Coppi, Phys Rev Lett 12 417 (1964) for gyroviscous cancellation. Cannot have layer width < ion gyroradius.
Zakharov, Sov. J. Plasma Phys. 4 503	1978 Internal kink mode in a tokamak	т	1 T				Supports the calculation given in [Bussac, 1975]
Dnestrovskij, et al, Sov. J. Plasma Phys 3 9	1977 Numerical simulations of internal-mode relaxation oscillations in a tokamak	С	1 C	1D		transport equations	s simple transport equation implementation of the Kadomtsev reconnection model
Coppi, et al, Sov. J. Plasma Phys 2 533	1976 Resistive Internal Kink Modes	Т	С		L	resistive MHD	Considers the 1D theory of internal kink modes with resistive corrections which are the same order.
Sykes and Wesson, Phys. Rev. Lett 37 , 140	1976 Relaxation Instability in Tokamaks	С	1 C	14x14x10		resistive MHD, high beta	Supports the Kadomtsev model, but is in a high- beta cylinder
Waddell, Rosenbluth et al, Nucl. Fusion 16 , 528	1976 Nonlinear growth of the m=1 Tearing Mode	С	1 C	S=5x10 ⁴	Ν	reduced two-field resistive MHD	The m=1 tearing mode grows fast enough in the nonlinear regime to explain the crash times of the present experimental data
Kadomtsev, B.B. Sov. J. Plasma Phys. 1 389 (1975)	1976 Disruptive instability in tokamaks	Т	1 C				Presents basic m=1 reconnection model. Predicts that $q(0) < 1$ before event, and $q(0) = 1$ after reconnection
Rosenbluth, Dagazian, Rutherford, Phys Fluids 16 , 1894	1976 Nonlinear properties of the internal m=1 kink instability in the cylindrical tokamak	-	С		Ν		Shows that the ideal m=1 instability saturates at a small amplitude with a singular current sheet.
Bussac, Phys Rev. Lett. 35 1638	1975 Internal Kink Modes in Toroidal Plasmas with Circular Cross Sections	Т	1			Ideal MHD	The ideal Internal Kink Mode can be stable in toroidal geometry for circular cross section plasmas if the pressure gradient is sufficiently low. This is contrary to the known result in cylindrical geometry.
Rutherford, Phys. Fluids 16 1903	1975 Nonlinear growth of the tearing mode	т					Classic nonlinear tearing mode reference. However, does not apply to the m=1 mode.

Von Goeler, Stodiek, and Sauthof, Phys. Rev. Lett. 33 1201	1973 Studies of Internal E disruptions and m=1 oscillations in tokamak discharges with soft-X-ray techniques	Ξ				first to use the term "sawtooth oscillation"
Shafranov, Sov. Phys. Tech Phys. 15 , 175	1970 Hydromagnetic stability of T a current-carrying pinch in a strong longitudinal	Г	С	L	Ideal MHD	Gives basic cylindrical stability theory, and the condition $q(a) > 1$

?