M3D Simulation Studies of ST's and Stellarators

W. Park, J. Breslau, J. Chen, G.Y. Fu, S.C. Jardin, S. Klasky,J. Menard, A. Pletzer, D. Stutman (PPPL)H.R. Strauss (NYU)L.E. Sugiyama (MIT)

Outline

- M3D code
 - MHD, two-fluids, hybrid models.
- NSTX studies including flow effects
 2D steady states.
 Evolutions of IRE's.
 BAE modes.
- Stellarator studies
 - Two-fluid results compared to MHD. TAE mode study using hybrid model.

W. Park et al., Phys. Plasmas **6**, 1796 (1999) http://w3.pppl.gov/~wpark/pop_99.pdf

Multilevel 3D Project for Plasma Simulation studies Various physics levels are needed to understand the physics. The best method depends on the problem at hand.

MHD model

· Solves MHD equations.

 $\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \mathbf{J} \times \mathbf{B} + \mu \nabla^2 \mathbf{v}$ $\partial \mathbf{B} / \partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = (-\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}), \quad \mathbf{J} = \nabla \times \mathbf{B}$ $\partial \rho / \partial t + \nabla \cdot (\rho \mathbf{v}) = 0$ $\partial p / \partial t + \mathbf{v} \cdot \nabla p = -\gamma p \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa \nabla (p/\rho)$

The fast parallel equilibration of T is modeled using wave equations;

$$\begin{pmatrix} \partial T / \partial t = s \mathbf{B} / \rho \cdot \nabla u \\ \partial u / \partial t = s \mathbf{B} \cdot \nabla \mathbf{T} + \upsilon \nabla^2 u & s = wave speed / v_A \end{pmatrix}$$

Two-fluid MH3D-T

 Solves the two fluid equations with gyro-viscousity and neoclassical parallel viscousity terms in a torus.

Equations

$$\mathbf{v} \equiv \mathbf{v}_{i} - \mathbf{v}_{i}^{*} = \mathbf{v}_{e} - \mathbf{v}_{e}^{*} + \mathbf{J}_{\parallel}/\text{en},$$

 $\mathbf{v}_{e}^{*} \equiv -\mathbf{B} \mathbf{x} \nabla \mathbf{P}_{e} /(\text{enB}^{2}), \quad \mathbf{v}_{i}^{*} \equiv \mathbf{v}_{e}^{*} + \mathbf{J}_{\perp}/\text{en},$

 $\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} + \rho (\mathbf{v}_i^* \cdot \nabla) \mathbf{v}_{\perp} = -\nabla p + \mathbf{J} \times \mathbf{B} - \mathbf{b} \cdot \nabla \cdot \Pi \mathbf{i},$

 $\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = (-\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}) - \nabla_{\!\!\!\Pi} \mathbf{P}_{\!\!\mathbf{e}} / \mathbf{en} - \mathbf{b} \cdot \nabla \cdot \Pi_{\!\!\mathbf{e}},$ $\mathbf{J} = \nabla \times \mathbf{B},$

```
\partial \rho / \partial t + \nabla \cdot (\rho \mathbf{v}_j) = 0,
```

 $\frac{\partial \mathbf{p}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{p} = -\gamma \mathbf{p} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\parallel} \nabla_{\parallel} (\mathbf{p}/\rho)$ $- \mathbf{v}_{i}^{*} \cdot \nabla \mathbf{p} + (1/en) \mathbf{J} \cdot \nabla \mathbf{p}_{e}$ $- \gamma \mathbf{p} \nabla \cdot \mathbf{v}_{i}^{*} + \gamma \mathbf{p}_{e} \mathbf{J} \cdot \nabla (1/en)$

 $\frac{\partial P_{e}}{\partial t} + \mathbf{v} \cdot \nabla P_{e} = -\gamma P_{e} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\parallel} \nabla_{\parallel} (P_{e} / \rho)$ + (1/en) $\mathbf{J}_{\parallel} \cdot \nabla P_{e} - \gamma P_{e} \nabla \cdot (\mathbf{v}_{e}^{\star} - \mathbf{J}_{\parallel} / en)$

GK Hot Particle /MHD Hybrid MH3D-K

Fluid equations

$$\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = \mathbf{v} \times \mathbf{B} - \eta (\mathbf{J} - \mathbf{J}_h), \quad \mathbf{J} = \nabla \times \mathbf{B}$$

 $\partial \rho / \partial t + \nabla \cdot (\rho \bm{v}) = 0$

```
\partial \mathbf{p} / \partial t + \mathbf{v} \cdot \nabla \mathbf{p} = -\gamma \mathbf{p} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa \cdot \nabla (\mathbf{p} / \rho)
```

Gyrokinetic equations for energetic particles

 $d\mathbf{R}/dt = \mathbf{u}[\mathbf{b} + (\mathbf{u}/\Omega)\mathbf{b} \times (\mathbf{b}\cdot\nabla\mathbf{b})] + (\mathbf{1}/\Omega)\mathbf{b} \times (\mu\nabla\mathbf{B} - q\mathbf{E}/m),$ $d\mathbf{u}/dt = -[\mathbf{b} + (\mathbf{u}/\Omega)\mathbf{b} \times (\mathbf{b}\cdot\nabla\mathbf{b})] \cdot (\mu\nabla\mathbf{B} - q\mathbf{E}/m).$

GK Particle Ion / Fluid Electron Hybrid

Pressure coupling

$$\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \cdot \mathbf{P} \mathbf{i} - \nabla \mathbf{P} \mathbf{e} + \mathbf{J} \times \mathbf{B}$$
$$= -\nabla \cdot \mathbf{P} \mathbf{i}^{CGL} - \nabla \cdot \Pi \mathbf{i} - \nabla \mathbf{P} \mathbf{e} + \mathbf{J} \times \mathbf{B}$$

V·Pi^{CGL}: from particles following GK eqns.
 V·Πi : fluid picture as 2 fluid eqns, or from particles.

Fluid electrons E = - Ve × B + ηJ + ∇· Pe /ne = -Ve × B + ηJ + ∇Pe /ne + bb· ∇·Πe /ne ∂B/∂t = -∇×E, J= ∇×B Pe eqn currently, but P_µ and P_⊥ eqns are planned.

2D steady state with toroidal sheared flow

Quasi neutrality: $\mathbf{r}\mathbf{V}\cdot\nabla\mathbf{V} + \nabla\cdot\mathbf{\ddot{P}} - \mathbf{J}\times\mathbf{B} = 0$

MHD:

At the magnetic axis: $\mathbf{J} \times \mathbf{B} = 0$ $-\frac{\mathbf{r} V_f^2}{R} + \frac{T \partial \mathbf{r}}{\partial R} = 0$ Relative shift of $\mathbf{r} \equiv \frac{R \partial \mathbf{r}}{r \partial R} = \frac{V_f^2}{T} = \frac{2M_A^2}{b}$

Density profile dependence on Physics model

NSTX experimental data

Relative shift of \boldsymbol{r} $\frac{R\partial \boldsymbol{r}}{\boldsymbol{r}\partial R} = \frac{2M_A^2}{\boldsymbol{b}}$

Hot particle centrifugal force ~ Bulk plasma

Linear Eigenmodes: shear flow reduces growth rate

Linear Eigenmodes Top view on the mid-plane

MA=0 Ωm=0 With shear flow: MA=0.2 Rotating mode: Ω m=0.13

Nonlinear Evolution without strong flow: similar to a sawtooth crash

Soft X-ray signals compared:

Theory agrees with experiment on general characters, but does not have wall locking and a saturation phase.

Nonlinear Evolution without strong flow

IRE : Disruption

Stochasticity as shown before.
Localized steepening of pressure driven modes as shown here.

Nonlinear Evolution with peak rotation of $M_A=0.2$

ρ (P) and T out of phase in a saturated case

 $\mathbf{f} = 0$

f = 0.5p

f=1.5**p**

f = **p**

Saturated steady state with strong sheared flow

B Field line in the island Density (Pressure) contours Temperature isosurface

Pressure peak inside the island together with shear flow causes the mode saturation.

EPM (BAE) is excited at high beta in hybrid simulations

More coupling to sound wave due to stronger curvature and high beta. May explain experimental data.

BAE changes to TAE when Γ is set to zero

Stellarator Studies

NCSX li 383 with MHD model: Resistive ballooning and resistive interchange unstable below the design beta.

At $\beta=8\%$, disruption can occur due to localized steepenings of pressure driven modes.

MHD Poincare t= 73.70 Two-fluid effects seem to stabilize the resistive modes. May explain the absence of resistive modes in experiments. -8 $\beta = 4\%$ 2 Fluid Poincare t= 73.69 ω^* stabilization is more effective for higher *n* modes which tend to be dominant in stellarators. This may also give -4 substantially higher ideal beta -# limit.

TAE Modes in Stellarators in Hybrid simulations

A 2-period QAS stellarator case is compared to the case when the 3D shape is suppressed.

TAE growth versus hot ion beta: the growth rate is linear in hot ion beta. TAE growth versus thefraction of 3D shape:3D geometry is stabilizing.

Summary

- M3D code is used for simulation studies.
- NSTX studies including flow effects:

The relative density shift relation holds in 2D steady states.

Toroidal sheared rotation reduces linear growth and can saturate internal kink.

IRE:Disruption can occur in at least two ways; due to stochasticity, and due to localized steepening of pressure driven modes.

BAE mode is found which may explain experimental data.

• Stellarator studies:

Two-fluid effects seem to stabilize resistive interchange, and may also give significantly higher ideal mode beta limit.

3D shape is stabilizing to TAE.

• For more quantitative studies with more realistic parameters, better physics models, mesh schemes, numerical algorithms, and parallel processing structures are being pursued.