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We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette
flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all
directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous
claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers,
rather than globally unstable magnetorotational modes.
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I. INTRODUCTION

The luminosity of most astrophysical accretion disks
probably depends upon the magnetorotational instability
�MRI� �1�, which has inspired searches for MRI in Taylor-
Couette flow. Standard MRI modes will not grow unless both
the rotation period and the Alfvén crossing time are shorter
than the time scale for magnetic diffusion. This requires that
both the magnetic Reynolds number Rem��1r1�r2−r1� /�
and the Lundquist number S�VAz

0 �r2−r1� /� be �1, where
VAz

0 =Bz
0 /�4�� is the Alfvén speed and Bz

0 is the background
magnetic field parallel to the angular velocity �=�ez. No
laboratory study of standard MRI has been completed except
for that of Sisan et al. �2�, whose experiment proceeded from
a background state that was already hydrodynamically turbu-
lent before the field was applied. Recent linear analyses of
axially periodic or infinite magnetized Taylor-Couette flow
have shown that MRI may grow at much reduced Rem and S
in the presence of a combination of axial and current-free
toroidal field �3,4�. We call such modes “helical” MRI
�HMRI�

The Potsdam Rossendorf magnetic instability experiment
�PROMISE� group have claimed to observe HMRI experi-
mentally �5–7�. At magnetic and flow parameters where lin-
ear analysis predicts instability, persistent fluctuations were
measured that appeared to form axially traveling waves, con-
sistent with expectations for HMRI. Similar behavior has
been seen in nonlinear numerical simulations that approxi-
mate the experimental conditions, including realistic viscous
boundary conditions for the velocities, but simplified ones
for the magnetic field: perfectly conducting cylinders, and
pseudovacuum conditions at the end caps, when present
�7,8�. Both axially periodic and finite cylinders showed un-
steady flow, the former case being more regular. However,
the nonlinear simulations in �7,8� used somewhat different
values for the cylinder rotation rates and other parameters
than those reported in �5�.

Previously, however, we have raised doubts about both
the experimental realizability of HMRI and its astrophysical
relevance �9�. Finite cylinders with insulating end caps were

shown to reduce the growth rate and to stabilize highly re-
sistive flows entirely, at least inviscid ones.

Here we report nonlinear simulations with the ZEUS-MP 2.0

code �10�, which is a time-explicit, compressible, astrophysi-
cal ideal magnetohydrodynamics parallel three-dimensional
code, to which we have added viscosity, resistivity �with sub-
cycling to reduce the cost of the induction equation�, and
vacuum boundary conditions, for axisymmetric flows in cy-
lindrical coordinates �r ,� ,z� �11�. The parameters of
PROMISE as reported in or inferred from �5� are used:
gallium density �=6.35 g cm−3, magnetic diffusivity
�=2.43�103 cm2 s−1, magnetic Prandtl number Prm�	 /�
=1.40�10−6, Reynolds number Re��1r1�r2−r1� /	=1775,
axial current Iz=6000 A, toroidal-coil currents I�
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FIG. 1. Computational domain for simulations of PROMISE.
Region I: Inner copper cylinder, angular velocity �1. II: Outer cop-
per cylinder and bottom end cap, �2. III: Liquid gallium IV:
Vacuum. Thick dashed line: insulating upper end cap, �=0. Dimen-
sions: r1=4.0 cm; r2=8.0 cm; h=40.0 cm; dwI=1.0 cm; dwII

=1.5 cm; �1 /2�=3.6 rpm; �2 /2�=0.972 rpm. The exact configu-
ration of the toroidal coils being unavailable to us, six coils �black
rectangles� with dimensions as shown were used, with 67 turns in
the two coils nearest the midplane and 72 in the rest. The currents I�

were adjusted to reproduce the reported �5� Hartmann numbers
Ha�Bz

0r1 /��
0�	.
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=0,50,75,120 A, and dimensions as in Fig. 1. The finite
conductivity and thickness of the copper vessel are allowed
for ��Cu=1.335�102 cm2 s−1�, and this noticeably improves
agreement with the measurements compared to previous lin-
ear calculations with radially perfectly conducting, axially
periodic boundaries �5,6�. Please note the difference of the
directions of �, Bz, and B� �components measured in a right-
handed coordinate system� between this paper, where they
are all assumed to be positive, and the experimental setup
presented in �5�, where they are all negative �20�. The direc-
tion of the traveling wave depends on the sign of the Poyn-
ting flux defined as −r�B�Bz /
0 �9�. Thus the direction of
the traveling wave reported here is opposite to that reported
in �5�.

II. BOUNDARY CONDITIONS

At the low frequencies relevant to PROMISE
�f �0.01Hz�, the skin depth of copper �w=��Cu/�f
0

�19 cm, which is much larger than the thickness of the
copper vessel surrounding the gallium in the PROMISE,
dw�1.0 cm, so that the magnetic field diffuses rather easily
into the boundary. On the other hand, if one considers axial
currents, the gallium and the copper wall act as resistors in

parallel; taking into account their conductivities and radial
thickness, one finds that their resistances are comparable
�RI :RII :RIII=3:1 :9; see Fig. 1 for the subscripts�. Therefore,
the currents carried by the copper walls could be important
for the toroidal field, and a perfectly insulating boundary
condition is also inappropriate.

We have adapted a linear axisymmetric code developed
by �9,12� to allow for a helical field. Vertical periodicity is
assumed, to allow separation of variables, but the full vis-
cous and resistive radial equations are solved using finite
differences, and a variety of radial boundary conditions can
be imposed. For perfectly conducting boundaries and I�

=75 A, where �5� report persistent waves, our code indeed
finds a complex growth rate: s�0.0057+0.057i s−1. But for
insulating boundaries, the same parameters yield stability.

This analysis points to the need for boundary conditions
that accurately represent the influence of the copper vessels
on the field. In the linear code just mentioned, we use the
thin-wall approximation of �13�, which in effect treats the
cylinders as insulating for the poloidal field but conducting
for the toroidal field. The errors of this approximation in-
crease with the ratio of wall thickness to gap width, which is
not very small ��0.25� in our case. Growth is predicted, but
at a smaller rate than for perfectly conducting walls, s
�0.0052+0.056i s−1. The insensitivity of the imaginary part
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FIG. 2. �Color� Axial velocities �mm s−1� versus time and depth sampled 1.5 cm from the outer cylinder, for the parameters of the
PROMISE �5� with toroidal currents I� as marked. Note that height increases upward from the bottom end cap. No-slip velocity boundary
conditions are imposed at the rigidly rotating end caps, but the steady part of the resulting Ekman circulation is suppressed in these plots by
subtracting the time average at each height. The waves appear to be absorbed near the Ekman jet, at z�100 mm.
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to the magnetic boundaries supports the interpretation that
these modes are hydrodynamic inertial oscillations weakly
destabilized by the helical field �9�.

In our nonlinear simulations, we include the copper walls
�regions I and II� in the computational domain �Fig. 1�, but
not the external coils themselves, whose inductive effects are
therefore neglected. Outside the walls �region IV� we match
onto a vacuum field Bext=�� vanishing at infinity. This is
relatively straightforward in spherical geometry �used by
many geodynamo experiments� because Laplace’s equation
separates. Our case is more difficult, because, while
Laplace’s equation separates in cylindrical coordinates when
the boundary is an infinite cylinder, it does not fully separate
outside a finite cylinder. Therefore we use an integral formu-
lation that does not assume separability. The idea, called von
Hagenow’s method �14�, is to find a surface current on the
boundary that is equivalent to the current density in the in-
terior as the source for Bext via the free-space Green’s func-
tion. The surface current is obtained by first solving the
Grad-Shafranov equation �15,16� in the interior with con-
ducting boundary conditions, a problem that is separable in
our case, and is solved efficiently by combining fast Fourier
transforms along z with tridiagonal matrix inversion along r.

III. RESULTS AND DISCUSSION

We start with purely hydrodynamic �unmagnetized� simu-
lations. For 
��2 /�1=0.27, what we see is simply an Ek-

man flow driven by the top and bottom end plates. Due to the
stronger pumping at the upper, stationary lid, the two Ekman
cells are of unequal size. They are separated vertically by a
narrow, intense radial outflow, hereafter the “jet,” lying at
about 11 cm above the bottom end cap. As discussed in �17�,
the jet is unsteady at Re�103; it flaps or wanders rapidly in
the poloidal plane. This has been verified by F. Stefani �21�.
The amplitude of the flapping is ±0.4 mm s−1.

Background states with purely axial or purely azimuthal
magnetic fields are symmetric under reflection z→−z, but a
helical field breaks this symmetry �18�. As a result, growing
modes in vertically infinite or periodic cylinders propagate
axially in a unique direction: that of the background Poyn-
ting flux −r�BBz /
0 �9�. Figure 2 displays vertical veloci-
ties near the outer cylinder in simulations corresponding to
the experimental runs of �5� for several values of the toroidal
current I�. A wave pattern very similar to that in the experi-
mental data is seen. It is most obvious for I�=75 A, just as in
the experiment. Considering that we do not use exactly the
same external coil configuration as PROMISE, the agree-
ment is remarkably good �Table I�.

Interestingly, the jet becomes nearly steady when
I��50 A. It is known that Ekman circulation is significantly
modified when the Elsasser number ��B2 / �
0�����1
�19�. If we use 	B�r1�	 for the field strength and �2 for � in
this expression, then �=4.8 at I�=75 A.

On the other hand, the magnetic field clearly promotes
unsteadiness in the interior flow. The waves seen in Fig. 2
are probably related to HMRI, but we do not believe that
they arise from a global instability of the experimental Cou-
ette flow. To demonstrate this, we have repeated the third
�I�=75 A� simulation shown in Fig. 2 with different velocity
boundary conditions. First, when we replace the rigidly ro-
tating end caps with differentially rotating ones that follow
the ideal angular velocity profile of an infinitely long Taylor-
Couette flow, then instead of the persistent traveling waves
seen in Fig. 2, we see slowly damping standing waves, which
we interpret as inertial oscillations excited by a small nu-
merical force imbalance in the initial conditions �9�. Second,

TABLE I. Comparison of results for the frequency, wavelength,
axial phase speed, and amplitude obtained from simulation and ex-
periment for the case I�=75A. f1��1 /2� is rotation frequency of
inner cylinder.

Calculation of �5,6� Experiment Our simulation

fwave / f1 �0.14 �0.15 0.15

�wave �cm� �12 6 6

vp �mm s−1� 1.1 0.8 0.7

A �mm s−1� Unavailable �0.4 �0.6
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FIG. 3. �Color� �a� Extended version of the case I�=75 A shown in Fig. 2 but without subtraction of the time average. The two Ekman
cells are visible as the upflow �orange� at z�100 mm and downflow �blue� at z�100 mm; these are the expected directions of flow near the
outer cylinder. �b� The same case again, except that, after t=360 s, the no-slip boundary condition at both endcaps is changed to an ideal
Couette profile, i.e., ��r�=a+br−2 with a and b chosen to make � continuous at both cylinders; this eliminates Ekman circulation.
Thereafter, the wave seems to be absorbed near the bottom �z�0 mm� rather than the jet �z�100 mm�, which itself dies out after t
�395 s.
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we perform a simulation that begins with the experimental
boundary conditions until the traveling waves are well estab-
lished, and then switches abruptly to ideal Couette end caps.
After the switch, the Ekman circulation stops and the travel-
ing waves disappear after one axial propagation time, as if
they had been emitted by the Ekman layer at the upper end
cap or by the layers on the upper part of the cylinders �Fig.
3�. After the switch in boundary conditions but before the
waves fully disappear, their vertical phase speed increases
from −0.7 to −1.1 cm s−1; the latter is the speed predicted by
linear analysis for axially periodic flow �6� �Fig. 3�. Both
numerical tests support the interpretation that the wave pat-
tern observed in the simulation and in the experiment is not
a global HMRI mode but rather a transient disturbance that is
somehow excited by the Ekman circulation and then tran-

siently amplified as it propagates along the background axial
Poynting flux, but is then absorbed once it reaches the jet or
the bottom end cap.
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