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In this paper we present axisymmetric nonlinear simulations of magnetized Ekman and Stewartson layers in
a magnetized Taylor-Couette flow with a centrifugally stable angular-momentum profile and with a magnetic
Reynolds number below the threshold of magnetorotational instability. The magnetic field is found to inhibit
the Ekman suction. The width of the Ekman layer is reduced with increased magnetic field normal to the end
plate. A uniformly rotating region forms near the outer cylinder. A strong magnetic field leads to a steady
Stewartson layer emanating from the junction between differentially rotating rings at the endcaps. The Stew-
artson layer becomes thinner with larger Reynolds number and penetrates deeper into the bulk flow with
stronger magnetic field and larger Reynolds number. However, at Reynolds number larger than a critical value
�600, axisymmetric, and perhaps also nonaxisymmetric, instabilities occur and result in a less prominent
Stewartson layer that extends less far from the boundary.
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I. INTRODUCTION

The history of Taylor-Couette flow dates back to the 19th
century. To measure viscosity, Ref. �1� studied flows between
rotating concentric cylinders. Rayleigh’s stability criterion
was introduced in 1916 during his study of cyclones. Refer-
ence �2� extended it by including viscosity, and made quan-
titative predictions of instability in Couette flow. If the cyl-
inders were infinitely long, the steady-state laminar solution
would be the ideal Taylor-Couette state

�0�r� = a +
b

r2 , �1�

in which a= ��2r2
2−�1r1

2� / �r2
2−r1

2� and b=r1
2r2

2��1−�2� / �r2
2

−r1
2�, where r1 and r2 are the radius of the inner and outer

cylinder, and �1 and �2 are the angular velocity of the inner
and outer cylinder, respectively. Rayleigh’s stability criterion
states that in the unmagnetized and inviscid limit, such a
flow is linearly axisymmetrically stable if and only if the
specific angular momentum increases outwards: ab�0.

The study of magnetized Taylor-Couette flow began much
later �3�. and �4� discovered that a vertical magnetic field
may destabilize the flow, provided that the angular velocity
decreases outward, �2

2��1
2, which today is called magne-

torotational instability �MRI�. In ideal magnetohydrodynam-
ics �MHD�, the instability takes place with an arbitrarily
weak field �5,6�. Experiments on magnetized Couette flow
aiming to observe MRI have been performed �7,8�, but MRI
has never been conclusively demonstrated in the laboratory.
Some other experiments have been proposed or are still un-
der construction �9–12�. The experimental geometry planned
by most groups is a magnetized Taylor-Couette flow: an in-
compressible liquid metal with density �, kinematic viscosity
�, and magnetic resistivity � confined between concentric

rotating cylinders, with an imposed axial and/or toroidal
background magnetic field sustained by currents external to
the fluid.

The challenge for experimentation is that liquid-metal
flows are very far from ideal on laboratory scales. While the
fluid Reynolds number Re��1r1�r2−r1� /� can be large, the
corresponding magnetic Reynolds number Rem��1r1�r2
−r1� /� is modest or small, because the magnetic Prandtl
number Prm�� /��10−5−10−6 in liquid metals. Standard
MRI modes will not grow unless both the rotation period and
the Alfvén crossing time are shorter than the timescale for
magnetic diffusion. This requires both Rem	1 and S	1,
where S�VA�r2−r1� /� is the Lundquist number, in which
VA=Bz0 /�
0� is the Alfvén speed and Bz0 is the imposed
axial magnetic field. Therefore, Re	106 and fields of several
kG must typically be achieved. Hollerbach and collaborators
have discovered that MRI-like modes may grow at much
reduced Rem and S in the presence of a helical background
field, a current-free combination of axial and toroidal field
�13,14�. Though �8� have claimed to observe this helical
MRI �HMRI� experimentally, we explained the experimen-
tally measured wave patterns to be transiently amplified dis-
turbances launched by viscous boundary layers rather than
globally unstable modes �16�. We also questioned the rel-
evance of this helical MRI to astrophysics by showing that
this new mode is stable for a Keplerian rotation profile by
WKB analysis in a narrow-gap geometry �see Sec. II A of
Liu et al. �15�� and by linear calculations in a wide-gap ge-
ometry �see Sec. II B of Liu et al. �15��. Recently Rüdiger
and Hollerbach �17�, Priede et al. �18� have reported that this
new mode is unstable in the inductionless limit for some
boundary conditions. Under the parameters used in the Rü-
diger and Hollerbach �17�, Priede et al. �18� �Rmm=S=Prm
=0, but with finite Re and Hartmann number Ha=VA�r2
−r1� /����, the authors are indeed taking the diffusivity to
infinity �→�. Note, however, that the combination
Ha2 /2Re= �VA�2 / �2���, which is the Elsasser number �
�29�, is also finite. The authors consider Ha and Re to be
constant as Prm→0; thus if we think of � and � as fixed,*wliu@lanl.gov
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then the Alfven speed must scale as �� as �→�. So, the
authors are considering a limit in which the Alfven speed is
infinitely larger than the rotation speed but poorly coupled to
the flow, whereas �15� we are thinking of the resistive limit
as one in which the field strength and rotation speed were
held fixed as the diffusivity became infinite. The former limit
is unlikely to be important in astrophysics. However, it might
be achieved in a low-plasma- but highly resistive �weakly
ionized� plasma.

In view of the large Reynolds number, the Taylor-
Proudman theorem suggests that the end plates should domi-
nate the entire flow unless a very long cylinder were used
�h / �r2−r1��103, where h is the height of the cylinders� �19�.
The no-slip boundary condition on the end plates causes an
imbalance between centrifugal and pressure forces and
drives Ekman circulation. If the endcaps rotate rigidly with
the outer cylinder, this circulation takes the form of inward
flows along the endcaps, which turn vertically along the in-
ner cylinder, converge at the midplane, and depart the cylin-
der in a radial jet �20�. This Ekman circulation, and espe-
cially the jet, transport angular momentum efficiently and
reduce the free energy available for shear-driven instabilities
�20�. Both effects are unfavorable for laboratory demonstra-
tion of MRI. The Princeton MRI experimental apparatus has
been constructed to minimize the circulation by the use of
independently controlled split endcaps �20–22�. Nevertheless
the jump of the rotation speed at the junction of the rings
extends some distance into the bulk as a “Stewartson layer”
�23,24� �an obvious Stewartson layer is not observed in a
purely hydrodynamic experiment �21�, the possible reasons
will be discussed in Sec. IV�, however, the modification of
the Stewartson layer by the axial magnetic field has to be
studied.

There has been research done on the MHD Ekman layers
�or Ekman-Hartmann layers as they are sometimes called in
the literature� �25–31�. However there has been little work
aside from Pariev �32� concerning the effect of finite differ-
ential rotation on Ekman layers, or Hollerbach �33,34� on
magnetized Stewartson layers in spherical geometry. The lat-
ter issues remain poorly understood but play a big role in
MRI experiments �16,35� and have potential importance in
geophysics and fluid dynamics. Hollerbach and Fournier �19�
discussed the purely hydrodynamic �unmagnetized� steady
results with the assumption of infinitesimal differential rota-
tion, or a very tiny Rossby number, while our paper dis-
cusses time-dependent solutions with finite differential rota-
tion. Szklarski and Rüdiger �35� presented results with finite
differential rotation but without rings �similar to Sec. III of
our paper�, thus no Stewartson layer is present. That paper is
a good contribution to the Potsdam Rossendorf Magnetic
Instability Experiment �PROMISE� and the discussion of
Taylor-Dean flow is very insightful. This paper is one of the
first to study magnetized Stewartson layers in cylindrical ge-
ometry. Understanding the role of the boundary layers, espe-
cially magnetized ones, is critical to the success of MRI ex-
periments.

It is known that Ekman circulation is significantly modi-
fied when the Elsasser number �29� exceeds unity:

� = Bz0
2 /�8����� 	 1, �2�

where � is the characteristic rotation frequency,
which we take equal to �2. For gallium, �
�2.5�B /T�2�1000 rpm /��. Adopting the parameters used in
the Princeton MRI experiment �Table I�, �=�2=533 rpm,
B=5000 G, immediately leads to ��1.2. In the PROMISE
experiment �8�, ��2.4. Hence magnetic modifications to the
Ekman layer should be significant in both experiments.

Here we report nonlinear simulations with the ZEUS-2D

code �36,37�, which is a time-explicit, compressible, astro-
physical ideal magnetohydrodynamics �MHD� two-
dimensional code, to which we have added viscosity and
resistivity �with subcycling to reduce the cost of the induc-
tion equation� for axisymmetric flows in cylindrical coordi-
nates �r ,� ,z� �38�. The simulation domain mimics the
Princeton MRI experiment �see Table I and Fig. 1� except
where stated explicitly. The code adopts the magnetic bound-
ary conditions introduced in Sec. II D of Liu et al. �15� �not
the commonly used vertically pseudovacuum boundary con-
ditions�. All real flows are actually compressible; in an ideal
gas of fixed total volume, density changes generally scale
�M2 when Mach number M =Vflow /Vsound�1. Incompress-
ibility is an idealization in the limit M→0. An isothermal
equation of state has been used with a sound speed chosen so
that the maximum of M�1 /4. The techniques used here
have been benchmarked analytically and compared with
other codes in Liu et al. �15,38� and verified experimentally
in Liu et al. �16�, Burin et al. �21�. Note that in the simula-
tions the magnetic diffusivity � is fixed to the experimental
value ��2000 cm2 s−1 �Table I�, however, the kinematic
viscosity is varied for the purpose of extrapolation. Also as
demonstrated by Goodman and Ji �12�, the viscosity of liquid
metals is so small as to be almost irrelevant to MRI, at least
in the linear regime.

In this present work, since we concentrate on magnetic
Ekman and Stewartson layers, the rotation speed profile is

TABLE I. Parameters used in the simulations.

Dimensions

r1=7.1 cm r2=20.3 cm

h=27.9 cm

Material property

�Ga�6.0 g cm−3 �Ga�2.0�103 cm2 s−1

Full speed run

�1 /2�=4000 rpm �2 /2�=533 rpm

�3 /2�=1820 rpm �4 /2�=650 rpm

Rotation Profile used in Sec. III A

�1 /2�=500 rpm �2 /2�=66.625 rpm

�3 /2�=66.625 rpm �4 /2�=66.625 rpm

Rotation profile used in Sec. III B

�1 /2�=500 rpm �2 /2�=66.625 rpm

�3 /2�=227.5 rpm �4 /2�=81.25 rpm
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chosen so that the system is MRI stable. We have found the
MRI linear growth rates �� s−1� as a function of magnetic
Reynolds number Rem and Lundquist number S �Fig. 1� from
a WKB analysis �11� with the same dimensions as in Table I
and 
=�2 /�1=0.13325, which shows that for Rem�10 the
system should be MRI stable. All simulations presented in
this paper are in this regime.

This paper is organized as follows. We start in Sec. II by
reviewing a one-dimensional approximation to magnetized
Ekman circulation above an infinite, uniformly rotating
boundary. Two-dimensional effects are introduced in Sec. III,
but still with rigid endcaps. In Sec. III B, we divide each
endcap into two independently rotating rings as in the
Princeton MRI experiment, and study the dependence of the
resulting Stewartson layer on the Reynolds and Elsasser
numbers. Implications for the Princeton MRI experiment are
discussed in Sec. IV.
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FIG. 1. Computational domain for studies of magnetic Ekman
layer. Region �I� Perfect conducting inner cylinder, angular velocity
�1, infinitely long. �II� Liquid metal. �III� Perfectly insulating inner
ring �3 extending to infinity. �IV� Perfectly insulating outer ring �4

extending to infinity. �V� Perfectly conducting outer cylinder �2

infinitely long. Thin dash line: the midplane. Bz is the initial back-
ground vertical uniform magnetic field.

FIG. 2. MRI linear growth rates �� s−1� as a function of mag-
netic Reynolds number Rem and Lundquist number S with dimen-
sions as in Table I: r1=7.1 cm, r2=20.3 cm, and h=27.9 cm and

=�2 /�1=0.13325. The system is MRI stable if Rem�10 regard-
less of S.

FIG. 3. The thickness of the Ekman layer � versus Elsasser
number � for Re=1600, Rem=5. �1 /2�=1000 rpm, �2 /2�
=1000 rpm, �3 /2�=1010 rpm, �4 /2�=1010 rpm. r1=15 cm,
r2=35 cm, and h=20 cm. The data is measured at r= �r1+r2� /2
=20 cm. The dashed line is the theoretical result. The solid line is
the one obtained from modified ZEUS-2D simulations. We have cho-
sen larger r1 and r2 than the ones of the Princeton MRI experiment
to minimize the curvilinear effects and larger h�10�E to minimize
the influence of the top endcap.

FIG. 4. The thickness of the Ekman layer � versus Elssaser
number � for Re=6400, Rem=2.5. Parameters as in Table I. The
data are measured at r= �r1+r2� /2=13.7 cm. The dashed line is
from the linear analysis �Eq. �11��. The solid line is obtained from
modified ZEUS-2D simulations.

MAGNETIZED EKMAN LAYER AND STEWARTSON LAYER … PHYSICAL REVIEW E 77, 056314 �2008�

056314-3



II. STANDARD MAGNETIC EKMAN LAYER
WITH NEAR-UNIFORM ROTATION

We begin with a problem considered by Ref. �25�. The
problem treated consists of an incompressible, viscous and
resistive fluid above an infinite, flat and insulating boundary
that rotates at angular velocity �=�ez. Far from the bound-
ary, the fluid rotates uniformly at ��=��1+��. A uniform
magnetic field aligned with the rotation axis is imposed. In
the analysis of Gilman and Benton �25�, an expansion in
powers of �, together with von Kármán similarity �39,40�,
leads to a solution that is exact to first order in �. In the limit
that ��1, increasing � results in a continuous transition
between pure Ekman flow and a rotating analog of Hartmann
flow.

Here we sketch a modified steady state WKB analysis
rather than an expansion in the von Kármán similarity vari-
ables used by Gilman and Benton �25�. With the t and r
dependence factored out, the linearized equations of motion
reduce to inhomogeneous ordinary differential equations
with coefficients independent of z. Elementary homogeneous
solutions of these equations exist with exponential depen-
dence on z; however, since there is an insulating end plate at
z=0, the wave number kn may be complex, and the final
solution can be a linear combination of the elementary
modes for different kn and one particular solution that
matches the flow far from the boundary. The vertical mag-
netic boundary conditions require the fields to match onto a
vacuum solution at the end plate.

We seek a mode of the form

FIG. 5. Contour plots of final-state velocities and fields with uniformly rotating endcaps. Re=6400, Rem=2.5 with Bz0=1500 G ��
=1.09�. Parameters as in Table I. �a� Poloidal flux function ��G cm2� �b� Poloidal stream function ��cm2 s−1� �c� toroidal field B��G� �d�
angular velocity ��r−1V��rad s−1�.
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�vr,v�,Br,B��T = �0,V�,0,0�T

+ 	
n=1

8

Cn�vr,n,v�,n,Br,n,B�,n�T exp�iknz� .

�3�

The first column vector on the right-hand side is the particu-
lar solution, which satisfies the boundary conditions at z=�
but not at z=0, where V� is the velocity far away from the
end plate. Each term in the sum above is the elementary
solution corresponding to a particular wavenumber kn, with
�vr,n , . . . ,B�,n�T a four-component column vector; these el-
ementary solutions are superposed with constant weights

Cn�, which must be chosen to satisfy the boundary condi-
tion. The eight values of the wave number 
kn� are the roots
of the steady-state dispersion relation

k4�����2k4 + 2��VA
2k2 + �VA

4 + 4�2�2�� = 0, �4�

which follows from the linearized, homogeneous and axi-
symmetric Navier-Stokes and induction equations. Only the
four nonzero roots of this equation are of interest since they
determine the boundary-layer thickness. The eigenmodes
corresponding to k=0 would modify the interior flow
�z→��. The four nonzero roots are

k2 =
VA

2

��
�

2�i

�
. �5�

The two “acceptable” nonzero roots of Eq. �5�, satisfying the
boundary conditions, are k�=−�kR� ikI�, where kR=�−1 as
given by Eq. �8�, so that

vr = − V�e−kRz sin kIz , �6�

v� = V��1 − e−kRz cos kIz� , �7�

where kI is related to kR by kI /kR=�1+�2−�. Thus

� = �E
1

���2 + 1 + �
� �E � �1 − �/2 if �� 1,

1/�2� if �� 1.
 �8�

Here �E=�� /� is the purely hydrodynamical Ekman-layer
thickness with near-uniform rotation. Notably, the Elsasser
number � �Eq. �2�� has nothing to do with �. Hence even if
the boundary layer were turbulent, with an effective turbu-
lent viscosity �T and thickness increased by O���T /��1/2�, the
magnetic field would be at least as consequential as in the
laminar case. This assumes that turbulent magnetic diffusiv-
ity is negligible, as one might expect since the laminar value
is large enough. One expects that ��1 probably results in a
more stable layer and pushes the onset of turbulence to larger
Reynolds numbers. In the limit �→�, the thickness
�→��� /VA: this is the Hartmann-layer thickness, which
does not depend upon �.

The above theoretical results have been used to bench-
mark our code �Fig. 3�. The thickness of the Ekman layer �
is the reciprocal of kR, which is deduced by fitting the simu-
lated data at rd= �r1+r2� /2 using Eq. �6�. The results agree
well with the theoretical prediction �Eq. �8��.

III. MAGNETIC EKMAN LAYER
WITH DIFFERENTIAL ROTATION

A. End plates corotating with the outer cylinder

In contrast with the idealized case in Sec. II, most Taylor-
Couette experiments have a two-dimensional circulation
driven by differences in the rotation of the inner and outer
cylinders and the endcaps. In this section, we take the end
plates to corotate with the outer cylinder, i.e., �3=�4=�2.

The Reynolds number based on the Ekman layer thick-
ness is �32�

Re� �
r2�2�

�
� Re1/2 � 3 � 103, �9�

for full-speed runs of the Princeton MRI experiment �Table
I�. The Ekman layer with uniform rotation as in Sec. II has
two known instabilities, viscous and inflection point insta-
bilities, both of which are axisymmetric. The viscous insta-
bility owes its existence to the perturbed Coriolis force �41�
while inflection point instability is of the inviscid type. From
Fig. 3 of Ref. �29�, the critical Reynolds number of the vis-
cous and inflection point instabilities associated with this
Ekman-Hartmann layer is in the range: 100�Re�c�1000
for ��1, at least for cases of near-uniform rotation as in
Sec. II. Thus the boundary layer is turbulent for the full-
speed runs of the Princeton MRI experiment. However in the
simulations, the Reynolds number in the bulk is taken to be
6400, thus Re�=80, so that the boundary layer is laminar.
Our discussion below is grounded on the equations of lami-
nar flows. The magnetic Reynolds number in the boundary
layer based on the thickness of the Ekman layer is defined as
�32�

Rm� =
�U0

�
�

Rem

�Re
, �10�

where U0 is a characteristic speed. For Re=6400 and
Rem=2.5 as in the simulations, Rm��3.125�10−2.

FIG. 6. �R / �r2−r1� vs �. �R is the radial width of the dynami-
cally active region. Rem=2.5, Re=6400 with end plates corotating
with outer cylinder. Parameters as in Table I. Note that in the simu-
lations the magnetic diffusivity � is fixed to ��2000 cm2 s−1,
however, the imposed axial magnetic field Bz0 is varied.
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Because Rm��1 and ��= ��−�2� /�2��1, the quantity 1
+ �1 /2�r�d� /dr�=1 / �2�r�d�r2�� /dr, which is the ratio of
vorticity to rotation speed �r� is the radius normalized by r2�,
is �a /�2�0. The solution decays with oscillation as
z→�, as for an unmagnetized Ekman layer. The modified
Ekman layer thickness � is given by �32�

� = �E��1��
−1 = �E

1

���2 + 1 + 1
2r�

d�
dr�

+ �
. �11�

Equation �11� reproduces Eq. �8� if there is no differential
rotation �d� /dr�→0�. Therefore the strong magnetic field
causes the Ekman layer to become thinner even with differ-
ential rotation. It is worth emphasizing that the above deri-
vation is based on a first order expansion in ��1.

Our simulations with the parameters of Table I approach
the regime of the above linear theory except that �1� the

radial boundary condition is conducting rather than insulat-
ing �a magnetic Ekman layer with fully insulating boundaries
on all sides is the next step for this problem and will be
included in a forthcoming paper�; �2� the flow profile far
away from the end plate differs from the ideal Couette pro-
file, though not greatly; �3� ���−�2� /�2��1 is not satisfied
except near the outer cylinder. The simulations are analyzed
at rd= �r1+r2� /2 to minimize two-dimensional effects due to
the radial boundary. Since ����rd�−�2� /�2�=1.08 is not
small, some nonlinear effects neglected in the above linear
analysis could be important.

From Fig. 4, we confirm that the axial magnetic field does
reduce the Ekman layer thickness. The finite differential ro-
tation cannot be neglected and modifies the linear Ekman
layer, which is seen from the unmagnetized case, i.e., �=0:
the theoretical result predicts that the thickness of the Ekman
layer with finite differential rotation is larger than the thick-
ness of the Ekman layer with uniform rotation; so does the

FIG. 7. Similar to Fig. 5, but with two differential rotating rings and �=1.5. Parameters as in Table I. The Stewartson layer is located
between the rings at rd= �r1+r2� /2=13.7 cm and breaks the two big Ekman cells into eight cells.
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numerical result, though slightly. Though the simulated
curve does not match the theoretical result very well, the
agreement is as good as might be expected when a theory
based on ��1 is applied to simulations at ��1.

For Re=6400, the final state is not steady even after at
least five Ekman times �E=h / ���̄ /2�1/2. Given a finite differ-
ential rotation, it is more appropriate to estimate Ekman time
�E via the epicyclic frequency

�̄ = 2��r2
4�2

2 − r1
4�1

2�/�r2
4 − r1

4��1/2,

which is the maximum frequency of small axisymmetric in-
ertial oscillations inside the inviscid fluid. Typical �instanta-
neous� flow and field patterns are shown in Fig. 5. The po-
loidal flux and stream functions are defined so that

VP � Vrer + Vzez = r−1e� � �� ,

BP � Brer + Bzez = r−1e� � �� , �12�

which imply � ·VP=0 and � ·BP=0. Two Ekman cells are
clearly visible. The flapping “jet” at the midplane due to the
Ekman circulation breaks the vertical reflection symmetry of
the system, resulting in a chaotic region around the midplane
�42�. The poloidal flow circulation and toroidal field are
small compared to the background toroidal flow and initial
axial field, respectively,

max
vr

r1�1
� 13%, max

B�

Bz0
� 3% .

The most noticeable feature of the final state of the magnetic
Ekman circulation is the presence of an area of solid body
rotation near the outer cylinder �Fig. 5�d�� as in Ref. �33�.
This area increases with the Elsasser number: the strong
axial magnetic field squeezes the dynamically active area
�Ekman cells� toward the inner cylinder �Fig. 6�. When �
=1.5, almost half of the liquid metal is rotating with the outer
cylinder. This is due at least in part to the following two
effects: �1� Larger axial magnetic fields suppress the Ekman
circulation more thoroughly; �2� The axial Hartmann current
turns toward radial direction near the midplane, and couples
with the axial magnetic field to produce an azimuthal Lor-
entz force, which tends to reduce the azimuthal velocity
shear �� /�z. Both effects reinforce Taylor-Proudman theo-
rem near the inner cylinder, where there is a large velocity
shear between the bulk flow and the end plate.

B. End plates split into two rings

We have brought the computation closer to the experi-
mental conditions by making the endcaps consist of two in-
dependently rotating rings as in Fig. 2 and Table I. The junc-
tion between these two rings lies at rd= �r1+r2� /2
=13.7 cm. For Re=6400, the final state is not steady. Typi-
cal �instantaneous� flow and field patterns are shown in Fig.
7. Two flapping “jets” due to the unsteady Stewartson layer,
emanating from the junction of the rings at both endcaps,
leads to a chaotic region localized there �Fig. 7�b��, which is
different from the case in Sec. III, in which the unsteady
region is mainly near the midplane. The poloidal flow circu-

lation and toroidal field are also small compared to the back-
ground toroidal flow and initial axial field, respectively,

max
vr

r1�1
� 4.3%, max

B�

Bz0
� 1.3% .

These ratios are smaller than the ones discussed in Sec. III,
which implies that the Ekman suction is reduced by splitting
the endcaps into two differentially rotating rings.

The following observations can be made from Fig. 7.
With rings the Stewartson layer is more apparent than Ekman
circulation. The split endcaps break the two big Ekman cells
found in Sec. III �Fig. 7�b��. The four cells at intermediate
radii are straightforward consequences of the Stewartson
layer as discussed below. The direction of the circulation of
the bottom four cells is opposite to the direction of the cir-
culation of the corresponding upper cells. Hereafter we focus
only on the upper half of the flow.

The increase of the number of Ekman cells can be under-
stood from Fig. 8. The direction of the residual Ekman flow
depends upon the angular velocity of the boundary relative to
the interior, thus resulting in anticlockwise normal Ekman
cells at r�10.6 cm and 13.7 cm�r�18.2 cm and clock-
wise abnormal Ekman cells elsewhere.

The magnetic field tends to reduce fluctuations in the final
state at high Reynolds number. The addition of an axial mag-
netic field �in the MRI stable regime� resists shear along the
magnetic field lines and elongates the cells vertically so that
they penetrate deeply into the fluid. The Stewartson layer
becomes more prominent with increasing � at fixed Re �Fig.
9�. This can be understood by considering the influence of
the magnetic field on the stability of the Stewartson layer.
More details are given in Sec. IV.

On the other hand, the Stewartson layer also becomes
sharper as Re increases at fixed � From Fig. 10�a�, we infer
the following scaling law:

FIG. 8. Two independently rotating rings generate eight cells.
Solid line, ideal Couette state; dashed line, rotation profile at the
endcaps. Arrows indicate the radial flow directions near the
endcaps.
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� ��

�r
� = 3.9 + 0.014Re0.57.

This is somewhat consistent with the one-dimensional analy-
ses of a purely hydrodynamic Stewartson layer, which show
that a Stewartson layer consists of nested layers of outer
thickness E1/4 and inner thickness E1/3 �24�, where E
=1 /Re is the Ekman number. Considering the idealizations
used in the analyses �24� and the complications in our two-
dimensional simulations, the agreement is as good as might
be expected.

We also observe that the Stewartson layer penetrates more
deeply into the bulk flow with larger Re at fixed �, at least

for Re�400 and �=1.5 in axisymmetry. This can be seen
from Fig. 10�b�. The profiles deviate from the ideal Couette
state more with larger Re �Re�400�. However, at even
higher Reynolds number �i.e., Re�400�, the Stewartson
layer develops axisymmetric MRI/centrifugal instabilities at
large axial wave numbers, which upon saturating result in a
less prominent Stewartson layer, as Fig. 10�b� �Re	400�.
The layer is more localized near the endcaps in these cases.
More details are given in Sec. IV.

IV. DISCUSSION

Purely hydrodynamical �i.e., �=0� experimental results
show that the azimuthal velocity profile is quite smooth; no

FIG. 9. Azimuthal velocity v� cm s−1 versus radius r at different heights with Rem=2.5, Re=6400, and the endcaps divided into two
rings at rd= �r1+r2� /2=13.7 cm. Parameters as in Table I. Solid line, ideal Couette state; long dashes, z=1.33 cm �relative to the bottom
endcap�; dash dot, z=2.79 cm; short dashes, z=13.95 cm. �a� �=0.38; �b� �=1.5.

FIG. 10. �a� ��� /�r� of the Stewartson layer at z=1.33 cm vs Reynolds number Re. �b� ���−�0� /�0� with rd= �r1+r2� /2=13.7 cm at
the midplane vs Re. Rem=2.5, �=1.5, and the endcaps divided into two rings at rd= �r1+r2� /2=13.7 cm. Parameters as in Table I. Note that
in the simulations the rotation speed profile is fixed to �1 /2�=500 rpm, �2 /2�=66.625 rpm, �3 /2�=227.5 rpm, �4 /2�=81.25 rpm,
however, the kinematic viscosity � is changeable.
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obvious Stewartson layer is observed at distances greater
than �1 cm from the bottom endcap �43�. The effect of the
velocity jump across the junction between rings is not as
severe as in the simulations reported here and those by Hol-
lerbach and Fournier �19�. This difference may be explained
by various instabilities associated with the Ekman and Stew-
artson layers.

As for the Ekman layer, the low Reynolds number used in
the simulations leads to a laminar Ekman-Hartmann layer as
discussed in Sec. III. The experimental boundary-layer Rey-
nolds number Re�=�Re�3�103 is larger than the critical
value Recrit�103 given ��1 �29�, for the axisymmetric in-
stabilities �viscous and inflection point instabilities� of
Ekman-Hartmann layer with near-uniform rotation. And the
vertical velocity shear due to the finite differential rotation in
the experiment would result in the Kelvin-Helmholtz insta-
bility given a sufficiently high Reynolds number, which,
however, could not be resolved by our axisymmetric simula-
tions due to the same reason stated below. Therefore unstable
Ekman layers are highly possible in the experiment. The lay-
ers may be smoothed by localized circulation and/or turbu-
lence from these instabilities. This may account for the dif-
ferences in the extent and prominence of the Stewartson
layer between simulation and experiment.

As for the Stewartson layer, at the junction of the rings,
the outer ring rotates more slowly than the inner one ��4
��3�, hence ��r2�2� /�r�0 across the junction. This radial
shear could result in both the Kelvin-Helmholtz instability
and Rayleigh centrifugal instability given a sufficiently high
Reynolds number. Unfortunately our axisymmetric simula-
tion could not resolve the Kelvin-Helmholtz instability since
it is a toroidal nonaxisymmetric mode. However, see Früh
and Read �44�, Hollerbach �45�, Hollerbach et al. �46�,
Schaeffer and Cardin �47� for experimental and theoretical
studies of such instabilities in other contexts.

It is well known that surface tension at the interface be-
tween two fluids hinders the Kelvin-Helmholtz instability. In
a homogeneous but magnetized fluid such as ours, magnetic

field tension may stabilize the Kelvin-Helmholtz instability
�48,49�, and the stability requirement for the inviscid Kelvin-
Helmholtz instability is �48�: �v�2VA, where �v is the ve-
locity jump and VA is the Alfvén speed. In Fig. 9, the �v
= ��3−�4�rd=210 cm s−1 while the VA is 102 cm s−1 for
panel �a� with �=0.38 and is 204 cm s−1 for panel �b� with
�=1.5, respectively. Therefore panel �a� is a Kelvin-
Helmholtz unstable case while panel �b� is a Kelvin-
Helmholtz stable case. In the real magnetized experiment,
besides the instabilities discussed below, a less prominent
Stewartson layer due to the Kelvin-Helmholtz instability
would be resulted in panel �a� compared to panel �b�.

Similarly magnetic field tension may stabilize the Ray-
leigh’s centrifugal instability �50�. We find that the short
wavelength modes are stabilized before �i.e., at lower �� the
long wavelength modes by performing a WKB stability
analysis for the flows near the junction of the rings �Fig. 11�,
where the Stewartson layer lies. Our analysis assumes axi-
symmetry, thus the Kelvin-Helmholtz instability is excluded.
Following Ji et al. �11�, we have the dispersion relation

��� + �k2��� + �k2� + �kzVA�2�2k2

kz
2 + �2�� + �k2�2

+
��2

� ln r
�kzVA�2 = 0. �13�

All variables have the same meanings as in Ji et al. �11�
except �1� the characteristic rotation speed � is chosen to be
��3�4; �2� the dimensionless vorticity parameter  
��1 /r��� �r2�� /�r=2+� ln � /� ln r is taken to be 2
+ �rd /����� /�r�, where ��=�3−�4 and �r is the radial
thickness of the Stewartson layer; �3� the wave number k
=�kz

2+kr
2, where the axial wave number kz=n� / �h /2� and

kr=� /�r �n is the vertical mode number� since the radial
and axial characteristic lengths are �r and h /2, respectively.

From Fig. 11, the Rayleigh’s centrifugal instability, which
occurs for all  �0 when VA=0 and �=0, is found to be

FIG. 11. Growth rates �� s−1� predicted by Eq. �13� as a function of Elsasser number � and vorticity parameter  at the junction of rings,
rd= �r1+r2� /2 with Re=6400. Parameters as in Table I. �a� the vertical mode number n=1; �b� n=2.
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suppressed by a strong magnetic field. This is consistent with
Ref. �50�. It is very interesting to see some growing modes
when  �0, which is the MRI associated with the Stewartson
layer. This instability also disappears with a sufficiently
strong magnetic field. Comparing panel �a� with panel �b�,
we find that the magnetic field suppresses the modes with
shorter wavelengths more strongly. This could explain why
the Stewartson layer extends deeper into the bulk with a
stronger magnetic field �Fig. 9�, by suppressing the growing
modes with short wavelengths that would otherwise tend to
smooth the velocity gradient.

Viscosity also has a stabilizing influence �Fig. 12�. Given
�=1.5, the Stewartson layer is found to be stable if Re
�600 regardless of the vertical mode number. This could
explain why the Stewartson layer penetrates deeper into the
bulk with increasing Reynolds number if the layer is steady
�Fig. 10�b�, Re�400�. However, at even larger Reynolds
number the instabilities would destabilize the layer and pre-
sumably smooth it out except near the endcaps �Fig. 10�b�,

Re	400�. If we could perform simulations without magnetic
fields at the experimental Reynolds number �Re	107�, we
expect that the profile of the azimuthal velocity vs radius at
�1 cm above the bottom endcap would be a tiny hump with
a large slope of the azimuthal velocity ��v� /�r� so that our
experimental measurement would not resolve it. Unfortu-
nately the current ZEUS code cannot afford a simulation with
Reynolds number as high as the one in the experiment.
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