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The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is

reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of

liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on

the applied field strength. The observed slow MC wave is damped but the observation provides a means

for predicting the onset of the magnetorotational instability.
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Hydromagnetic waves are a ubiquitous feature of both
geophysical and solar dynamo models as well as models of
astrophysical accretion disks. Such waves were first ob-
served in experiments [1] with liquid metals using a suffi-
ciently strong magnetic field that the Lorentz force could
act like tension on a string and support Alfvén waves [2].
When the liquid is in rapid rotation, these waves are
modified by the Coriolis force. The resultant magnetocori-
olis waves [3] are a hybrid of Alfvén waves and inertial
waves [4]. Magnetocoriolis waves (MC waves) are used to
explain the secular variation of Earth’s magnetic field over
the course of hundreds of years [5] and the redistribution of
angular momentum in the Sun [6]. They are a special case
of the more general magnetic archimedes coriolis (MAC)
waves from dynamo theory [7,8].

Despite the importance of MC waves in rotating con-
ducting fluids and plasmas there is scant experimental
evidence of their existence and of their relationship to
various important astrophysical phenomena such as the
dynamo or the magnetorotational instability (MRI) [9–
11]. Recent experiments [12] on a liquid sodium spherical
Couette device and simulations [13] have found several
different types of hydromagnetic waves, but there is am-
biguity about their identification as MC waves. A similar
experiment in Maryland found inertial waves [14], but the
applied fields were too weak to observe Lorentz force
effects.

In this Letter, we report the first clear identification of
the combined fast and slow MC waves in a laboratory
experiment. Through measurements of the radial magnetic
field in a liquid metal Taylor-Couette flow, we observe two
rotating modes that follow the rotation speeds expected for
the fast and slow MC wave. We also demonstrate through a
local stability analysis that with the addition of sufficient
flow shear, the slow MC wave can be destabilized to
produce the MRI. Using the observed frequencies of the
waves we infer from the local dispersion relation that the
modes are damped and obtain a method of determining the
threshold for the MRI.

The Princeton MRI experiment is designed to study the
stability of a rotating sheared flow of liquid metal with an

applied magnetic field coaxial with the rotation axis. The
apparatus has been described elsewhere [15] and has al-
ready demonstrated the ability to generate high Reynolds
number shear flow in water with angular momentum flux
comparable to viscous transport (a null result in trying to
demonstrate subcritical hydrodynamic instability [16]).
The volume between the concentric rotating cylinders is
filled with GaInSn, a gallium eutectic alloy [17]. The
dimensions of the experiment and properties of the liquid
metal are given in Table I.
The equations describing the evolution of a rotating

shear flow with a background magnetic field are given by
the magnetohydrodynamic (MHD) equations in a rotating
frame:
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where v and B are solenoidal fields representing the ve-
locity and magnetic field, � is the angular velocity, and p
is the pressure. The generalized pressure P incorporates the
magnetic and centrifugal pressure terms.
The background field and angular velocity are given by

B0 ¼ B0ẑ and � ¼ �ẑ. If we assume harmonic perturba-
tions of the velocity and magnetic field and linearize the
resulting equations, we obtain the dispersion relation in
cylindrical coordinates [18]:

TABLE I. Physical parameters of the apparatus [15] and liquid
metal [17].

Experimental parameters Symbol Units Value

Height h cm 27.9

Inner cylinder radius r1 cm 7.06

Outer cylinder radius r2 cm 20.30

Density � g=cm3 6.36

Kinematic viscosity � cm2=s 2:98� 10�3

Magnetic diffusivity � cm2=s 2:57� 103
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where k� ¼ m=r for integer m, �! ¼ !�m� is the

Doppler-shifted complex frequency, �� ¼ �k2 and �� ¼
�k2 are the resistive and viscous damping rates, !A ¼
kzB0=

ffiffiffiffiffiffiffiffiffiffi
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is the Alfvén frequency, and !R ¼
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2 is the Rossby wave frequency [19]. We

have quantified the flow shear by introducing the vorticity
parameter
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Note that � is only constant if the rotation profile follows a
power-law dependence �ðrÞ / r��2. For uniform rotation
with no shear � ¼ 2. The Rayleigh criterion [20], which
governs axisymmetric hydrodynamic centrifugal stability
of rotating shear flow, is given by � � 0.

We can gain insight into the basic waves for this disper-
sion relation by examining limiting cases. In the absence of
rotation, the dispersion relation reduces to

ð!� i��Þð!� i��Þ �!2
A ¼ 0; (3)

which describes the damped shear Alfvén wave. These
waves have a transverse polarization due to the incompres-
sibility of the fluid (in a compressible fluid there is also a
longitudinal magnetosonic wave). The complex frequency
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which shows

that the Alfvén wave is viscously and resistively damped
and has a real frequency of �!A in the absence of dis-
sipation. Variations in the flow along the direction of the
magnetic field tend to be eliminated in a highly resistive
fluid (such as a liquid metal) due to this damping.

Assuming rotation without shear and without an applied
magnetic field, the dispersion relation reduces to

ð!� i��Þ2 þ ð2�kz=kÞ2 ¼ 0 (4)

which describes inertial waves. Inertial waves also have a
transverse polarization but are peculiar in that the restoring
force, provided by the Coriolis effect, acts orthogonally to
the displacement. The resulting motion of a displaced fluid
element is circular precession. The complex frequency is
! ¼ i�� � 2�kz=k so the wave is viscously damped with
a real frequency between �2�. Note that there is no
dependence on the wavelength. Akin to Alfvén waves,
inertial waves homogenize the flow along the axis of
rotation due to viscous damping, consistent with the
Taylor-Proudman theorem [4].

Together these waves make up the hybrid magnetocori-
olis wave [3]. Since there are two restoring forces acting on

displaced fluid elements, there are two possible situations.
The Lorentz and Coriolis forces may act together, stiffen-
ing the system and producing the higher frequency fast
wave, or the two forces may oppose one another to produce
the lower frequency slow wave. The requirement for ob-
serving strong rotational effects on the Alfvén wave is
r�

ffiffiffiffiffiffiffiffiffiffi

�0�
p

=B0 � 1. The Alfvén frequency experiences a

splitting due to the breaking of the degeneracy of the two
roots by the presence of rotation. When the flow has
sufficient shear, the slow MC wave becomes stationary
and unstable at low k as seen in Fig. 1. This instability is
the MRI which in addition to causing turbulent transport of
angular momentum in accretion disks may also be related
to geomagnetic jerks [21].
The results reported here were obtained when an axial

magnetic field was applied to turbulent rotating shear flow.
The outer cylinder was kept stationary while the inner
cylinder rotated. The rings at the end caps were coupled
to either cylinder in what is referred to as the ‘‘split’’
configuration [15]. The flow was hydrodynamically un-
stable since � � 0. The inner cylinder and inner ring

(a)

(b)

(c)

(d)

FIG. 1 (color online). The real part of the dispersion relation
for (a) damped Alfvén waves as given in Eq. (3), (b) inertial
waves as given in Eq. (4), and (c) the fast (dashed red line) and
slow MC waves (solid blue line). (d) The growth rate of the fast
and slow MC waves. Because of resistive dissipation, the MC
waves collapse to the inertial wave dispersion at high k. When
there is sufficient flow shear, the slow MC wave becomes
unstable at low k. The parameters for the dispersion relation
are B0 ¼ 4 kG, � ¼ 42 rad=s, and � ¼ 0:25 (maximum design
parameters of the apparatus) and the fluid properties are given in
Table I.
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were set in rotation at 6.7 Hz and an axial magnetic field
between 1.7 to 4.3 kG was applied to the turbulent flow.
The induced radial magnetic field fluctuations were mea-
sured by an array of Mirnov coils [22] positioned just
outside the outer cylinder. A nonaxisymmetric mode was
apparent from the coil array as seen in the snapshot of the
field shown in Fig. 2. The image is created by fitting the
signals from the array to a spatial Fourier mode model
using standard least squares fitting. From the model we
obtain the Fourier amplitude and phase as shown in Fig. 3.
The variation of the mode amplitudes with magnetic field
strength is not linear as would be expected for advection by
differential rotation (the � effect).

The mode rotation rates are measured by calculating the
linear slope of the Fourier phase with time for each field
strength. The results are shown in Fig. 4. The modes clearly
rotate at different speeds and their rotation rates increase
with magnetic field strength. By comparing the rotation

rates with those of higher azimuthal harmonics obtained
from the high density midplane coil array (seen as the
series of dots at z ¼ 0 in Fig. 2) we find that the harmonics
are not phase locked. Hence, the signal is not likely due to a
passing vortex as was observed in Sisan et al. [11]. They
are also not the result of the MRI since the least-damped
mode should be axisymmetric.
A least squares fit of the observed mode rotation rates to

the real frequencies of the fast and slowMCwaves gives an
estimate of the local wave vector components and the fluid
rotation rate for a given shear. The wave number compo-
nents are fit since the observed magnetic field is much
smoother than the velocity field due to the low Pm and
cannot reveal detailed structures like the boundary layers.
The fit is insensitive to the vorticity parameter � and so we
assume it to be zero for marginal stability consistent with
hydrodynamic observations [23]. The fit parameters result
in a mode with kz ¼ �=2h and kr ¼ �=ðr2 � r1Þ which
corresponds to the smallest (and therefore least-damped)
radial wave number that can fit in the radial gap and a
quarter-wavelength vertically. The growth rate determined
from the fit is shown in Fig. 4(b). Aside from an expected
Doppler shift for the nonaxisymmetric modes, the MC-
wave model provides an excellent fit to the observations.
From the growth rate, we find that the slow wave has a
small positive growth rate for 1 kG but is otherwise
damped. The model suggests that the MRI growth rate is
too small at the rotation rates achieved to observe it with
our diagnostics. By adjusting the model parameters we can

FIG. 2 (color online). A contour plot of the radial magnetic
field near the surface of the outer cylinder constructed from a
least squares fit of data from the Mirnov coil array. The locations
of the coils are depicted by dots and the contour levels are given
in Gauss. The applied field was 4.3 kG.

(a)

(b)

(c)

FIG. 3 (color online). (a) Magnetic field measured by a single
Mirnov coil. (b) The time series of (0,1) and (1,1) mode
amplitudes from a 2D Fourier decomposition of the radial
magnetic field where the notation (n, m) describes the vertical
mode number n and the azimuthal mode number m. (c) The time
series of mode phases.

(a)

(b)

FIG. 4 (color online). The real frequency (a) and growth rate
(b) determined by fitting the phase speed of the two nonaxisym-
metric modes observed for a range of applied magnetic field
strengths to Eq. (1). Error bars reflect the uncertainty in the linear
fit to the phase as a function of time. The dashed red and solid
blue lines show the fit of the fast and slow MC waves from
Eq. (1) with values of � ¼ 0, k ¼ 0:246� 0:001 cm�1, 	 ¼
1:336� 0:007 rad where kz ¼ k cos	, and � ¼ 5:4�
0:9 rad=s. The shaded areas express the uncertainty in the fit.
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predict the necessary rotation rate and magnetic field
strength to observe the MRI based on the empirical obser-
vations of damped waves.

Nonaxisymmetric waves have been observed in the
PROMISE magnetized Taylor-Couette experiment [24]
which has also observed the helical MRI [10,25]. Sisan
et al. [26] also observed rotating nonaxisymmetric spheri-
cal harmonic patterns in a turbulent liquid sodium spheri-
cal Couette flow which they attribute to the MRI, but may
be due to a shear instability of the secondary meridional
flow [27]. Runout of the inner cylinder could lead to a
spinover mode due to the elliptical instability, but it is
suppressed by the magnetic field [28]. It is still unclear
why these nonaxisymmetric waves are favored over the
axisymmetric ones, and its resolution may require 3D
simulations as well as internal flow and magnetic field
measurements.

One conjecture regarding the source of these damped
waves is that the turbulent flow provides perturbations of a
broad range of wavelengths, but that the geometry of the
vessel dictates which modes are realized [29]. Such is
observed when a precessing top cap is used to drive inertial
waves in a cylinder filled with water [30]. The observed
waves in this case are cavity resonances driven by unstable
flow at the boundary discontinuities and not an instability
of the bulk flow. It is also possible that these damped waves
are driven through nonlinear wave coupling [31]. If such is
the case, then these damped waves may be a saturation
mechanism for the MRI. Although we have not observed
the MRI in the experiment, nonlinear simulations of single
mode MRI found that saturation was achieved by amplify-
ing the vertical field through an 
 effect [32]. It is due to
the ambiguity of the source of these waves that we are
continuing to pursue an observation of magnetically in-
duced instability in a hydrodynamically quiescent flow.

In summary, we have observed rotating modes in a
turbulent Taylor-Couette flow of liquid metal that we iden-
tify as the fast and slow MC wave. We have identified a
relationship between the slow MC wave and the MRI and
have proposed a method of determining the threshold for
instability through observation of driven MC waves. MC
waves will be important in identifying the MRI in further
experiments and may also play a role in saturation of MHD
turbulence in rotating fluids.
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