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ABSTRACT

Context. Subcritical transition to turbulence has been proposed as a source of turbulent viscosity required for the associated angular
momentum transport for fast accretion in Keplerian disks. Previously cited laboratory experiments in supporting this hypothesis were
performed either in a different type of flow than Keplerian or without quantitative measurements of angular momentum transport
and mean flow profile, and all of them appear to suffer from Ekman effects, secondary flows induced by nonoptimal axial boundary
conditions. Such Ekman effects are expected to be absent from astronomical disks, which probably have stress-free vertical boundaries
unless strongly magnetized.
Aims. To quantify angular momentum transport due to subcritical hydrodynamic turbulence, if exists, in a quasi-Keplerian flow with
minimized Ekman effects.
Methods. We perform a local measurement of the azimuthal-radial component of the Reynolds stress tensor in a novel laboratory
apparatus where Ekman effects are minimized by flexible control of axial boundary conditions.
Results. We find significant Ekman effects on angular momentum transport due to nonoptimal axial boundary conditions in quasi-
Keplerian flows. With the optimal control of Ekman effects, no statistically meaningful angular momentum transport is detected in
such flows at Reynolds number up to two millions.
Conclusions. Either a subcritical transition does not occur, or, if a subcritical transition does occur, the associated radial transport
of angular momentum in optimized quasi-Keplerian laboratory flows is too small to directly support the hypothesis that subcritical
hydrodynamic turbulence is responsible for accretion in astrophysical disks. Possible limitations in applying laboratory results to
astrophysical disks due to experimental geometry are discussed.
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1. Introduction

The everyday experience of velocity shear in a fluid flow is that
if the shear is large enough a laminar flow will become turbulent.
In non-rotating flow such as Poiseiulle flow or plane-Couette
flow the laminar state is linearly stable at all Reynolds numbers.
Nevertheless, in the presence of disturbances of finite amplitude,
a transition to turbulence can occur (Darbyshire & Mullin 1994).
In the case of rotating shear flow, such as the Taylor-Couette flow
(Taylor 1923; Couette 1888) established between concentric ro-
tating cylinders, a transition to turbulence was observed (Wendt
1933; Taylor 1936) for the case in which the inner cylinder was
at rest with the outer one spinning. This configuration is linearly
stable to infinitesimal perturbations at all Reynolds numbers.
Nevertheless, instability was observed at Re ∼ 103−105. The
transition has been assumed to be subcritical due to similarities
with pipe flow transition, though Schultz-Grunow (1959) stated
that the transition appeared to be similar to a Kelvin-Helmholtz
instability. No first-principles theory exists for subcritical tran-
sition in a rotating shear flow, though recent efforts to iden-
tify such a transition mechanism can be found in Chagelishvili
et al. (2003); Tevzadze et al. (2003); Yecko (2004); Umurhan
& Regev (2004); Mukhopadhyay et al. (2005); Afshordi et al.
(2005); Lithwick (2007); Rincon et al. (2007); Lithwick (2009);
Mukhopadhyay et al. (2011); Mukhopadhyay & Saha (2011).
Phenomenological models have been developed based on the
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assumption that the observed transition is subcritical in na-
ture (Zeldovich 1981; Richard & Zahn 1999; Longaretti 2002;
Dubrulle et al. 2005).

This observation has motivated hydrodynamic theories of
accretion mechanisms since the work of Shakura & Sunyaev
(1973). The linear magnetorotational instability (MRI) (Balbus
& Hawley 1991) has since emerged as the mechanism most
likely to provide the required levels of angular momentum trans-
port. However, the electrical conductivity of protostellar accre-
tion disks is at best marginally adequate for MRI-driven accre-
tion (Bai 2011; Oishi & Mac Low 2011) and references therein.
Therefore, purely hydrodynamic models based on subcritical hy-
drodynamic instability (SHI) still remain of interest for these
cool disks.

A review of transport mechanisms in accretion disks can be
found in Balbus & Hawley (1998). The matter in thin accretion
disks follow Keplerian angular velocity profiles, Ω(r) ∝ r−3/2,
the angular momentum increases with radius, l(r) ∝ r2Ω ∝ r1/2

and the disk is stable to linear centrifugal instability (Rayleigh
1916). In SHI models of disk accretion, shear in the angular ve-
locity is the source of free energy to drive enhanced transport.
A dimensionless coefficient β relates the shear to a turbulent
viscosity, νT. Modeling by Hueso & Guillot (2005) of two pro-
toplanetary systems require that β lies in the range 10−6−10−4,
which appears to be compatible with the deduced β by Richard
& Zahn (1999) based on the Taylor-Couette flow experiments by
Wendt (1933) and Taylor (1936).

The velocity profile developed in a Taylor-Couette experi-
ment may share with the Keplerian flow the opposing gradients
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Fig. 1. Rotation profiles developed between
concentric, co-rotating cylinders. The axes are
the rotation speeds of the cylinders defined by
a Reynolds number Re1,2 = Ω1,2r1,2(r2 − r1)/ν,
where 1 (2) refers to the inner (outer) cylinder.
The cylinder radius is r and Ω is the angular
velocity. The kinematic viscosity is ν. The flow
profiles are classified by a local exponent of an-
gular velocity q ≡ −∂ lnΩ/∂ ln r. In cyclonic
flow q < 0. The anti-cyclonic regime is further
divided in to quasi-Keplerian and centrifugally
unstable flows, the boundary between the two
is the flat angular momentum profile, q = 2.

of angular momentum and angular velocity. We refer to these
flows as quasi-Keplerian. The quasi-Keplerian profile is a sub-
set of anti-cyclonic profiles in which ∂Ω/∂r < 0 and may be
either centrifugally unstable, ∂l/∂r < 0, or stable, ∂l/∂r > 0.
Flows in which ∂Ω/∂r > 0 are cyclonic and are linearly stable
at all Reynolds numbers. This is the regime in which Wendt and
Taylor made their observations. It is worth noting that the β pre-
scription by Richard & Zahn (1999), even if valid for the cy-
clonic evidence on which they based it, may not be valid for
anti-cyclonic flow, in particular Keplerian flow.

The Princeton MRI experiment is a Taylor-Couette device
developed (Schartman et al. 2009) to produce quasi-Keplerian
flows in both water and a liquid gallium alloy to look for
evidence of both SHI using water and the MRI using alloy
(Ji et al. 2001; Goodman & Ji 2002). The flows of interest are
diagrammed in Fig. 1. We use two dimensionless numbers to
characterize our flow profiles: the Reynolds number, Re, and the
local exponent of angular velocity, q. The concentric cylinders
have radii r1, r2 (r1 < r2) and angular velocities Ω1,Ω2. We de-
fine Re ≡ (Ω1 −Ω2) (r2 − r1) r̄/ν, where r̄ = (r2 + r1)/2 and
ν is the kinematic viscosity. We follow the definition used in
Balbus & Hawley (1998) for q ≡ −∂ lnΩ/∂ ln r. For a Keplerian
disk q = 3/2, and the limit of marginal stability by the Rayleigh
criterion occurs for q = 2.

Based on observations of SHI in non-rotating flow three
characteristics are always present. 1) The laminar state before
transition is linearly stable to infinitesimal perturbations. 2) A
hysteresis is observed in the transition: the change from the lam-
inar to the turbulent state occurs at a greater Reynolds num-
ber than the transition from turbulent to laminar flow. 3) The

transition to the turbulent state is triggered by the presence of
ambient fluctuations in the laminar flow. For circular Poiseuille
flow no transition occurs below Re ≈ 2 × 103, even for pertur-
bation amplitude equal to the mean flow velocity (Darbyshire
& Mullin 1994). At higher Reynolds number, the fluctuation
level required to trigger transition decreases. In carefully con-
trolled experiments the transition has been delayed to Re ∼ 105

(Pfenniger 1961).
Local shearing box simulations have been performed to in-

vestigate the hydrodynamic stability of quasi-Keplerian flows.
Hawley et al. (1999) and Lesur & Longaretti (2005) studied the
decay of applied turbulence near the boundary of marginal cen-
trifugal instability (Rayleigh 1916). Both investigations excite
transiently the largest Fourier modes of the simulation domain
and observe the subsequent evolution of the flow. In both simula-
tions the turbulence decays rapidly for all quasi-Keplerian values
of q, except those close to centrifugal instability. Hawley et al.
(1999) report that for q/2 < 99.5% and perturbation amplitudes
of v′/v = 1 to 100% the flow relaminarizes within one to five
orbital periods.

In the anti-cyclonic cases investigated by Lesur & Longaretti
(2005) they begin the simulation on the marginally-centrifugally
stable boundary, q = 2, with a perturbation amplitude of 100%.
While holding Re constant, they gradually step in to the cen-
trifugally stable regime until the flow becomes laminar. They
observe that the turbulence persists into the stable regime, but
that the critical Reynolds number is an extremely steep function
of the distance to the linear stability boundary. In going from
q/2 ≈ 99% to q/2 ≈ 97%, the transition Reynolds number in-
creases from <1 × 104 to ≈8 × 104.
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The forcing amplitude imposed on a fully developed flow
used by Lesur & Longaretti (2005) cannot be produced in the
Princeton MRI Experiment. We are restricted to forcing the flow
with ambient fluctuation levels generated by the boundaries, or
by accelerating the boundaries to produce a new flow profile.
In the latter case, a statistically steady mean velocity is not
reached before the fluctuation levels fall below 5%. In the most
unstable flows which we can produce via instability, the maxi-
mum measured fluctuation amplitude is of order 10%. No appar-
ent hystereses associated with a transition were observed with
these attempts.

Prior to our work in this regime, Richard (2001) and Beckley
(2002) were the only experiments to study the stability of
quasi-Keplerian flows. Richard’s experiments were performed at
Re ∼ 104, and Beckley’s were at Re ∼ 106. The relation of
these Reynolds numbers to our experiments are shown in Fig. 1.
Beckley diagnosed his flow by measuring the torque required
to maintain a steady state flow. He found that the Reynolds
number scaling of this torque was inconsistent with laminar
Taylor-Couette flow. Beckley’s apparatus was constructed with
cylinder heights comparable to the gap between them, h =
2(r2 − r1), and the end caps fixed to the outer cylinder. Because
of the relative proximity of the end caps and their speed, Beckley
concluded that the excess torque was due to an Ekman circula-
tion (see Sect. 3.4).

The Taylor-Couette device employed by Richard (2001)
used taller cylinders, h ≈ 25(r2 − r1), with less influence on the
bulk flow from the end caps than Beckley’s apparatus (by using
a “split” configuration; see Sect. 3 below). Using a visualization
technique, Richard observed that his flow underwent a transi-
tion to wavy states (Longaretti 2008, priv. comm.) at a Reynolds
number of approximately 104, but without quantitative measure-
ments of the angular momentum transport. The measured pro-
files of the mean azimuthal velocity, however, still deviated sig-
nificantly from the ideal Couette solution (see Sect. 2 below),
presumably due to Ekman circulation driven by the endcaps.

In this paper we present the results of our investigation of
SHI in quasi-Keplerian flows in the Princeton MRI experiment.
We show significant influences by end caps on the measured an-
gular momentum transport. By using two independently rotat-
able end caps at each end, the Ekman effects are minimized, re-
sulting in much lower transport levels than proposed by Richard
& Zahn (1999). The implications to angular momentum trans-
port in astrophysical disks are discussed.

2. Measurement of angular momentum transport

We briefly review the hydrodynamics of the ideal Couette flow
to make explicit the terms which are accessible experimentally
to us. We work in cylindrical coordinates (r, θ, z). The incom-
pressible Navier-Stokes equations with stress tensor σ̄ are:

∂u

∂t
+ (u · ∇) u = ∇ · σ̄ (1)

∇ · u = 0. (2)

Writing out the full equation for the azimuthal velocity, vθ:

∂vθ
∂t
+
vr
r
∂(rvθ)
∂r
+
vθ
r
∂vθ
∂θ
+ vz
∂vθ
∂z
= − 1
ρr
∂p
∂θ

+ν

(
1
r2

∂

∂r

[
r3 ∂

∂r

(
vθ

r

)]
+

1
r2

∂2vθ

∂θ2
+
∂2vθ

∂z2
+

2
r2

∂vr

∂θ

)
· (3)

For steady-state, laminar flow where the transport is only radial
(i.e. infinitely tall cylinders), ∂/∂θ = ∂/∂z = 0, the incompress-
ibility condition gives (1/r)∂(rvr)/∂r = 0 and therefore vr = 0
from the impermeable radial boundary conditions. Equation (3)
becomes:

0 =
1
r2

∂

∂r

[
r3 ∂

∂r

(
vθ

r

)]
(4)

leading to the ideal Couette solution for the angular velocity:

Ω(r) = a +
b
r2
,

with constants:

a =
Ω2r2

2 −Ω1r2
1

r2
2 − r2

1

, b =
(Ω1 −Ω2) r2

2r2
1

r2
2 − r2

1

, (5)

where Ω1 (Ω2) is the angular velocity of the inner (outer) cylin-
der, and r1 (r2) is the radius of the inner (outer) cylinder, r1 < r2.
The constants a, b are determined from non-slip boundary con-
ditions at the cylinder walls.

We split all quantities into values time-averaged over a pe-
riod greater than τE (denoted by 〈〉) and fluctuations around them
(denoted by primes), as in vi = 〈vi〉 + v′i . By the virtue of a
rotating flow, time averaging is equivalent to azimuthal averag-
ing so that ∂〈vi〉/∂t = ∂〈vi〉/∂θ = 0. The averaged Eq. (3) then
becomes

〈vr〉
r
∂(r〈vθ〉)
∂r

+ 〈vz〉∂〈vθ〉
∂z
+

1
r2

∂(r2〈v′rv′θ〉)
∂r

+
∂〈v′zv′θ〉
∂z

=

ν

(
1
r2

∂

∂r

[
r3 ∂

∂r

( 〈vθ〉
r

)]
+
∂2〈vθ〉
∂z2

)
· (6)

The second term on the left hand side here (also on the right
hand side) can be dropped because of Taylor-Proudman theorem
(Greenspan 1968) which states that under steady-state, inviscid
conditions where ∂(r2Ω(r))/∂r > 0 the flow profile becomes
independent of height. This has been confirmed in our experi-
ments (see Fig. 7 later and also Ji et al. 2006), if sufficiently far
from the boundaries. Therefore, deviation from the ideal Couette
solution, Eq. (5), arises from only three sources: advection of
momentum by a mean radial velocity 〈vr〉, the radial-azimuthal
component of the Reynolds stress, Σrθ = 〈v′rv′θ〉, and the axial-
azimuthal component of Reynolds stress, Σθz = 〈v′zv′θ〉. Using
2-component laser Doppler velocimetry (LDV) oriented axially
we can directly measure Σrθ and 〈vr〉. We do not measure Σθz
because the measurement volumes for vθ and vz do not overlap
when the diagnostic is oriented radially (Schartman et al. 2009).
This is not of any consequence for this study, however, since in
accretion disks Σrθ is the turbulent stress responsible for the en-
hanced transport and closure models developed for disks focus
on it exclusively.

Zeldovich (1981) first applied Taylor’s torque measurements
of cyclonic Couette flow to develop a closure model for Σrθ.
Richard & Zahn (1999) extended Zeldovich’s analysis using the
combined results of Wendt and Taylor to develop their closure
model. We will focus here on the methodology of Richard and
Zahn, but note that Longaretti (2002) arrived at a similar result
using an eddy viscosity argument applied to the cyclonic data.

The closure model of Richard and Zahn proceeds from the
scaling of the transition Reynolds number in the cyclonic data
of Taylor and Wendt. The critical Reynolds number, Rec, is a
function of the gap between the cylinders Δr = r2 − r1. When
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Fig. 2. A) The Princeton MRI Experiment is a
Taylor-Couette apparatus in which the end caps
of the vessel have been divided in to two pairs
of nested, independently rotatable end rings.
B) The primary diagnostic of the fluid veloc-
ity is laser Doppler velocimetry (LDV). Radial
profiles of vθ are acquired with the diagnostic
viewing the fluid from the side. In the axial
orientation two components of velocity vθ and
vr are measured. Simultaneous measurement of
the two velocities gives a direct measure of the
r − θ component of the Reynolds stress. Due to
very low data rates, the Reynolds stress is mea-
sured primarily at one point.

the ratio of gap width to the average radius r̄ = (r1 + r2)/2,
Δr/r̄ > 1/20, Rec increases like (Δr/r̄)2. In this regime Richard
and Zahn rewrite the critical Reynolds number in terms of the
angular velocity gradient and arrive at an instability condition:

Rec =
r̄3

ν

ΔΩ

Δr

(
Δr
r̄

)2

≥ 6 × 105

(
Δr
r̄

)2

· (7)

(We note that this prescription implies that the relevant length
scale is r̄ rather than other length scales, Δr or h, an assumption
which may not be justified. See Sect. 5 for more discussion.)

By this prescription, Richard (2001) should expect a turbu-
lent transition at Rec ≈ 7 × 104 for the radius ratio Δr/r̄ = 0.35.
In the cyclonic experiments, a transition was observed at Re =
3 × 104. However, the estimate for Rec does not carry over to
the anti-cyclonic experiment where a transition was observed
at Re ≈ 3 × 103. Also absent from the discussion leading to
this equation is an estimate of the perturbation amplitudes which
triggered the transitions in the experiments of Wendt and Taylor.

Torque measurements in the turbulent regime suggest to
Richard and Zahn that the turbulent viscosity, νt, is a diffusive
process and choose for it the form νt = αr̄ΔΩΔr, α is a constant.
Finally, using the observed approximate scaling of α with gap
width, Richard & Zahn conclude that the local value for νt be-
comes independent of the gap width (for large enough gaps) and
is determined only by the local shear:

νt = β

∣∣∣∣∣r3 ∂Ω

∂r

∣∣∣∣∣ · (8)

The flux of angular momentum is then given by

ρr2〈v′rv′θ〉 = −ρνtr3 ∂Ω

∂r
, (9)

which can be rewritten in terms of q:

β = −〈v′rv′θ〉/q2v2θ . (10)

Thus, β can be directly determined through measurements of
the Reynolds stress. Finally, we comment on a particular case
where 〈vθ〉 satisfies the ideal Couette solution (Eq. (5)) with
negligible 〈vr〉 and axial dependences. In such a case, Eq. (6)
reduces to

1
r2

∂(r2〈v′rv′θ〉)
∂r

= 0 (11)

where the specific angular momentum flux, r2〈v′rv′θ〉 [=νtr3qΩ =
β(r3qΩ)2], is a spatial constant. This is especially convenient
when diagnostic access for Reynolds stress measurements are
limited to certain locations. The Reynolds stress at other loca-
tions can be inferred.

3. Experiment

The Princeton MRI Experiment is a novel Taylor-Couette appa-
ratus (Tagg 1994). The working fluid is confined between con-
centric, corotating cylinders which are bounded vertically by
two pairs of nested, differentially rotating end rings (Burin et al.
2006; Schartman et al. 2009), Fig. 2. The experiment was de-
signed to produce quasi-Keplerian flows of a liquid gallium al-
loy, GaInSn (Morley et al. 2008) which would become unstable
to the MRI in the presence of an applied solenoidal magnetic
field (Ji et al. 2001). To minimize the volume of GaInSn required
for the MRI studies, the height of the cylinders is only twice the
gap width between them, h/Δr = h/ (r2 − r1) ≈ 2. This aspect
ratio is small in comparison with other Taylor-Couette experi-
ments which aim to minimize the influence of the end caps by
separating them as much as possible. For example, Taylor (1936)
used h/Δr > 100. Further details of the design and implementa-
tion of the apparatus and diagnostics can be found in Schartman
et al. (2009).

3.1. Apparatus

The experiment outer cylinder is a pressure vessel into which the
inner cylinder and end rings are submerged. The outer cylinder is
a 25.4 mm thick annulus of cast acrylic capped by two 101.6 mm
thick acrylic disks. The inner cylinder and end rings are mounted
to nested stainless steel axles which pass through the top cap of
the outer cylinder. The rings are acrylic. The lower rings and
outer cylinder cap were polished to allow optical diagnostic ac-
cess to the fluid. The inner cylinder is stainless steel and was
painted black to reduce reflections which would interfere with
the velocity measurement (Table 1). A lip seal is mounted at the
top end of each axle to seal against its inner neighbor. The sub-
merged, lower, end of each component is fixed radially by a plain
bearing.

The hydrodynamic experiments reported here use water or a
water-glycerol mix as the working fluid. The kinematic viscosity
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Table 1. Radii and maximum angular velocities of experiment
components.

Component Radius Ωmax/2π
(mm) (s−1)

Inner cylinder 70.6 66.7
Inner ring 101.5 24.3
Outer ring 167.8 6.7
Outer cylinder 203.0 9.0
Cylinder height 280.0 mm

Notes. For the inner and outer rings the given radius is the mid-radius
of the ring.

Table 2. Component speeds used to produce marginal and unstable flow
profiles.

Profile name Ω1 Ω3 Ω4 Ω2

QK(Ekman) 7.50 1.00 1.00 1.00
QK(q = 1.9) 7.50 2.74 0.77 1.00
QK(Split) 7.50 7.50 1.00 1.00
QK(q = 1.5) 5.91 2.48 1.09 1.00
MS 8.27 3.02 0.83 1.00
CUS 1 9.43 3.43 0.94 1.00
CUS 2 9.43 3.43 0.00 0.00
Solidbody 1.00 1.00 1.00 1.00

Notes. Speeds are listed as a fraction of the Outer Cylinder speed, Ω2.
MS is marginally stable, CUS is unstable by the Rayleigh criterion.

of the water-glycerol mix is νmix = (15 ± 1)νwater, with a density
of 1.2 g/cm3.

The Princeton MRI Experiment also differs from previous
Taylor-Couette experiments in the low tolerance of several com-
ponents. The submerged plain bearings have radial “play” rang-
ing up to 0.1 mm. Because those bearings are nested, they con-
tribute to a total run-out of the inner cylinder of up to 0.8 mm,
see Schartman et al. (2009).

3.2. Experimental flow profiles

The component speeds used to develop the azimuthal velocity
profiles are enumerated in Table 2. The four component speeds
are listed as ratios to the outer cylinder rotation speed. Our flows
of primary interest are the two quasi-Keplerian profiles with
nominal values based on the cylinder speeds of q = 1.5 and 1.9.
The flow shear of the former is most analogous to accretion flow
and for convenience we refer to it as “QK(q = 1.5)”. The fastest
growing mode of the MRI has a growth rate |ωmax| ∝ |qΩ|,
therefore the value of q = 1.9 was selected to take advantage
of this. The q = 1.9 flow is divided into the three named pro-
files “QK(Ekman)”, “QK(Split)” and “QK(q = 1.9)” to reflect
the choice of end ring speeds. “Ekman” refers to the boundary
layer that we expected to significantly perturb the ideal profile,
as was seen in a prototype experiment with h/(r2 − r1) = 1
(Kageyama et al. 2004). “Split” duplicates the end cap condi-
tion commonly used in Taylor-Couette experiments, such as with
Taylor, Richard and Wendt (though Wendt had no upper cap, but
a free surface). In the “QK(q = 1.9)” profile the end rings are
rotating at speeds intermediate to those of the cylinders. The par-
ticular choice of speeds were arrived at by trial and error to best
approximate the ideal Couette profile, Eq. (5). Radial profiles
of vθ for the q = 1.9 profiles will be presented in Sect. 4.3.

In addition to the quasi-Keplerian profiles, we also present
measurements of Σrθ from three other anti-cyclonic flows: MS,

CUS 1 and CUS 2. They were chosen to lie at or above the
Rayleigh centrifugal stability limit. MS refers to a configura-
tion for which the end ring and inner cylinder speeds have been
scaled up to the marginal stability line, q = 2. For the cylinder
radii we have chosen, the Rayleigh criterion is reached when the
inner cylinder speed is Ω1 = Ω2r2

2/r
2
1 = 8.27, the CUS profiles

are centrifugally unstable by this criterion. For CUS 1, the speed
of the inner cylinder and the end rings have been scaled by a con-
stant from those of the QK(q = 1.9) configuration by 15% above
the Rayleigh criterion. To make the flow even more unstable,
the CUS 2 profile has had the outer end ring and outer cylin-
der speeds set to zero. Radial profiles of v̄θ for the CUS cases
were not measured. Measurements of transport in the turbulent
centrifugally unstable cases are reported in Burin et al. (2010).

The flow profiles are established through an impulsive ac-
celeration of the rotating components. Most often, the experi-
ment was started from rest, though a transition from solid body
to differential rotation was also common. The abrupt change in
boundary speeds causes the fluid to spin up via Ekman pump-
ing rather than viscous diffusion, though shear instabilities at
the walls may contribute to spin-up at early times. The Ekman
timescale governs the equilibration time, τE ∼ (L2/νΩ2)1/2.
When Ω2 = 5.6 rad/s, τE ∼ 60 s. We observed that the fluctua-
tion levels reached their equilibrium values after approximately
five viscous Ekman times, and so waited a minimum of 300 s
before performing flow measurements (Schartman et al. 2009).

3.3. Diagnostics

3.3.1. Laser Doppler velocimetry

We use LDV for two types of measurement depending on the
orientation of the diagnostic with respect to the apparatus, see
Fig. 2. When the diagnostic is oriented to view the fluid through
the outer cylinder wall, radial profiles of azimuthal velocity, vθ,
are acquired. Viewing the fluid from beneath the vessel, we mea-
sure simultaneously vθ and vr with a correlation window of 10 μs
between them. Thus, all fluctuations are measured up to the fre-
quency of 105 Hz, which is comparable to the Doppler frequency
of structures at the viscous scale in water or the size of the
tracer particles used. All flows are calibrated against solid body
rotation.

In this experiment, the primary sources of error in the
LDV measurement are due to optical properties of the acrylic
outer cylinder. The errors arise from the curvature of the cylin-
der, misalignment of the probe head with respect to the vessel
and random defects in the optical path. The random defects arise
through stress-induced variations in the refractive index of the
acrylic. The variations most likely induce spurious correlations
by altering the focal lengths of the LDV beams (Miles 1996).
The velocity measurement is proportional to sin(d/2 f ), where d
is the beam separation and f is the focal length. Varying the fo-
cus for both vr and vφ measurements simultaneously will intro-
duce a simultaneous over or underestimation of the velocities.
The mean error is removed by calibration against solid body ro-
tation. However, the random defects broaden the sample distri-
bution of the velocity measurement, which cannot be eliminated.
The limiting precision of LDV is v′/v ≈ 0.1%, whereas our pre-
cision was 1.5%. Details of the calibration process can be found
in Schartman (2008).

When the LDV was setup to measure radial profiles of vθ, the
beam probe head is oriented to view the fluid through the curved
outer cylinder wall. The laser paths for the velocity component
tangent to the azimuthal angle enter and exit the cylinder wall
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Fig. 3. End cap effects which were predicted to dis-
tort significantly the mean profile of vθ from the
ideal Couette solution. Left: in the bulk flow the
velocity profile is supported by the radial pressure
gradient, v2θ(r)/r = ∂p/∂r. The pressure is approxi-
mately uniform vertically, but at the end caps the
non-slip boundary condition requires vθ = rΩ2.
This imbalance at the end cap drives the radial
Ekman circulation, when Ω2 < Ω1 the flow is di-
rected inward. When the Ekman flow reaches the
inner cylinder it transitions to an axial flow. In
a small aspect-ratio device such as the Princeton
MRI Experiment (Kageyama et al. 2004) predict
that the Ekman circulations would meet at the mid-
plane and form a radial jet. Right: with indepen-
dent end rings, the strength of the Ekman pump-
ing can be reduced by minimizing the velocity
difference between the rings and the bulk flow.
The simulations of Kageyama et al. (2004) showed
that two rings provided an effective trade off be-
tween mechanical complexity and reduced Ekman
pumping. A simulation of the two-ring design by
Hollerbach & Fournier (2004) predicted the forma-
tion of Stewartson layers at the boundaries between
the components. The ideal Couette profile would
then be replaced by two annuli in solid body rota-
tion with the end rings.

at non-normal incidence. As the probe is scanned radially the
angles of incidence change, which alters both the radial location
and magnitude of the vθ measurement, see Schartman (2008).
The location of the axial velocity measurement did not coin-
cide with that of vθ so Σθz could not be measured. Moreover,
the vz measurement location was often outside of the flow vol-
ume, so this velocity component was ignored.

When the LDV diagnostic is oriented axially to measure vθ
and vr, the beam path passes through the cylinder bottom cap
and outer ring. Attenuation of the laser intensity due to the four
boundary crossings limits the data rate to order 1 Hz. For the
previously reported measurements of the radial-azimuthal com-
ponent of Reynolds stress (Ji et al. 2006; Burin et al. 2010), we
required of order 103 velocity samples per fluid profile. Because
of this time demand, LDV was performed at only one radial loca-
tion in this orientation. The LDV probe head was oriented such
that the beam bisector was approximately normal to the acrylic
surfaces. Comparison with the expected velocity value for solid-
body rotation revealed an offset of about 3% in the magnitude
of the vθ.

3.3.2. Flow visualization

Flow visualization of CU, QK(Ekman) and QK(q = 1.9) profiles
was performed using water with a 0.3% addition of Kalliroscope
AQ-1000 rheoscopic concentrate. The Kalliroscope flakes align
with the local fluid shear. The intensity and direction of light
scattered by the flakes to make flow patterns visible (Savas
1985). In laminar circular Couette flow the surface normal of
the flakes align parallel to r̂. Illuminated from below, ideal (and
stable) Couette flow should appear as a uniform color. The flow
over the outer ring was illuminated from below by a flashlight
and imaged from the side by a CCD.

An attempt to image the flow over the inner ring using this
method was not successful. The broad area of illumination com-
bined with the low Kalliroscope concentration required to view
the inner region of the flow could not produce enough contrast
in the CCD to generate useful images.

3.4. End caps effects: Ekman and Stewartson layers

All physically realizable Taylor-Couette experiments have a fi-
nite cylinder height, h. Rigid plates form the vertical bound-
aries, with some exceptions such as Wendt (1933) who used a
free upper fluid surface. The non-slip boundary conditions at the
end caps may introduce deviations from the ideal Couette pro-
file, Eq. (5). The influence of the boundaries is never completely
negligible even for aspect ratios in excess of 100 (Taylor 1936;
Tagg 1994). Two possible effects of the boundaries are to pro-
duce Ekman (Greenspan 1968) or Stewartson layers (Stewartson
1957).

In the bulk flow pressure balances the centrifugal force of
the velocity profile, ∂P/∂r = ρrΩ2

bulk(r). The pressure is approxi-
mately constant vertically, while the velocity in the viscous layer
attached to an end cap is rotating at the end cap speed, Ωcap. At
the interface between the bulk flow and the viscous layer, a radial
Ekman flow is generated to balance the discontinuity of force,
see Fig. 3. If Ωcap < Ωbulk, the Ekman flow is directed inward
radially. When the layer reaches the inner cylinder, it transitions
to an axial flow and is accelerated as it spirals along the cylinder.
In large aspect ratio devices, the Ekman layer may detach from
the inner cylinder before reaching the midplane (Coles 1965).
In small aspect ratio devices such as our prototype (Kageyama
et al. 2004) we observed that the Ekman layers from each end
cap propagated to the cylinder midplane. The flows at the junc-
ture then detached from the inner cylinder in a radial jet. The
advection of angular momentum by the Ekman layers produced
a mean radial profile of vθ which was centrifugally unstable near
the inner cylinder, and flattened over the larger radii. The cylin-
ders of the current apparatus are only a factor of two taller than
the prototype, so we expected a similar effect occur when both
end rings co-rotate with the outer cylinder.

Stewartson layers arise from the tendency of a rotating flow
to be uniform along the axis of rotation, at least on timescales
long compared to an Ekman time, τE. Simulations by Hollerbach
& Fournier (2004) of the Princeton MRI Experiment predicted
the formation of Stewartson layers at the boundaries of the end

A94, page 6 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016252&pdf_id=3


E. Schartman et al.: Stability of quasi-Keplerian shear flow in a laboratory experiment

Inner Ring

In
ne

r 
C

yl
in

de
r

O
ut

er
 C

yl
in

de
r

Outer Ring

F
A

BBBD

132m
m

120m
m

E C

location of 
fluctuation
measurement

S
ig

n 
of

 E
km

an
 c

irc
ul

at
io

n 
ch

an
ge

s
40 mm

90m
m

105m
m

Fig. 4. Regions of flow within cylinder gap MRI operation, in this case the outer ring is rotating slower than the bulk flow and the inner ring
corotates with the bulk flow at r = 120 mm. The lower half of the apparatus is shown. A) The Taylor-Proudman theorem holds in the bulk flow,
which closely approximates the ideal Couette profile. B) Fluctuations generated by the vertical boundaries extend approximately 40 mm into the
flow. The sign of radial circulation within the “boundary zones” are indicated by the horizontal arrows. At r = 120 mm, the boundary corotates
with the bulk flow. The radial velocity of the Ekman circulation changes sign at this radius as the ring is removing (adding) angular momentum to
the bulk at smaller (larger) radii. The Ekman circulations penetrate into the bulk flow, see Fig. 8. Near the ring gap a vertical scan of vθ fluctuations
indicates that the discontinuity in velocity produced at the ring gap does not propagate in to the bulk flow. C) Centrifugally stable boundary which
transitions from the bulk flow to the outer cylinder. (This region C may be centrifugally unstable when the cylinder speeds exceeds the Rayleigh
criterion as in the flow CUS 1 listed in Table 2. This leads to a lower q than 2 in the region A), and may explain the small measured Reynolds stress
there as shown in Fig. 10). D) Ekman layer detaches from walls with higher fluctuations visible in the 5 mm radial scan, see Fig. 7. The maximum
fluctuation amplitude due to the detachment is approximately 37% and occurs at r ≈ 105 mm (Schartman 2008). E) Measurement of q indicates a
centrifugally-unstable region exists between the inner cylinder and r1 ≈ 90 mm. F) The unstable flow relaminarizes by r = 100 mm.

rings, see Fig. 3. The layers are predicted to separate the bulk
fluid in to two annuli. The inner annulus would be in solid body
rotation with the inner end rings, and the outer annulus with the
outer end rings. The narrow shear layers between the two annuli,
and between the annuli and cylinders would be unstable (Hide &
Titman 1967; Früh & Read 1999).

Two experiments using LDV were performed to determine
the extent to which Ekman or Stewartson layers cause the bulk
flow to deviate from the ideal Couette profile. The first exper-
iment was to compare the radial profiles of vθ using end ring
speeds which would maximize or minimize the strength of the
Ekman circulation. The second experiment was a detailed verti-
cal scan of vθ near the ring gap for the profile which minimizes
the Ekman circulation. The results of these experiments are pre-
sented in Sect. 4.3.

4. Results

4.1. Topography of the QK(q = 1.9) profile

Before presenting the details of the experiments, the topogra-
phy of a flow generated in the QK(q = 1.9) configuration is
diagrammed in Fig. 4. The QK(q = 1.9) profile is displayed
because it demonstrates the greatest diversity of behavior in
the apparatus. The profiles generated by a different choice of
end ring speeds feature one or more of the behaviors of the
QK(q = 1.9) profile. The profile consists of a bulk flow in
which the Taylor-Proudman theorem holds, and is bounded at

the cylinder walls by thin shear layers. The layer at the inner
cylinder is anti-cyclonic and unstable by Rayleigh’s criterion.
The layer at the outer cylinder is cyclonic, and therefore stable.
Ekman layers are present on the top and bottom end rings. One
radius of the inner ring corotates with the bulk flow. On either
side of this radius the Ekman flows change sign and the flows
are able to penetrate deeply into the bulk flow. No radius of the
outer ring corotates with the bulk flow, confluence of Ekman cir-
culation does not occur.

The Kalliroscope images of Fig. 5C indicate the most ob-
vious characteristic of the flow: a bulk profile in which the
Taylor-Proudman theorem holds, is bounded above and below
by a turbulent layer. The measurement of Σrθ which extended
from z = 35 mm up to z = 90 mm shows no evidence of turbu-
lent radial transport. Mechanical limits of the LDV diagnostic
prevented measurements closer than 35 mm to the boundary.
From Fig. 7 the region in which the Taylor-Proudman theorem
holds extends to at least 5 mm from the end rings. We also
know from Fig. 8 that the fluctuation levels of vθ are increas-
ing as the end ring is approached. Both of these imply the ex-
istence of a vertical Reynolds stress Σθz. Our ability to place a
bound on Σθz is limited by the uncertainty in the magnitude of
v̄r = 0.18 ± 0.17 mm/s (Schartman 2008).

4.2. Flow visualization

Images taken with the Kalliroscope technique are shown in
Fig. 5. The three flows shown are a CUS 2 centrifugally unstable
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Fig. 5. Kalliroscope image of three flows at
Re ≈ 5 × 105. A) centrifugally unstable flow
with [Ω1,Ω3,Ω4,Ω1] = [41.8, 0, 0, 0] rad/s.
B) A quasi-Keplerian flow using the Ekman
configuration, QK(Ekman), [Ω1,Ω3,Ω4,Ω1] =
[41.8, 5.6, 5.6, 5.6] rad/s. C) A quasi-Keplerian
profile with end ring speeds optimized to
produce the best approximation to the ideal
Couette flow 5, QK(q = 1.9), [Ω1,Ω3,Ω4,
Ω1] = [41.8, 15.3, 4.2, 5.6] rad/s.

flow with the outer cylinder at rest, QK(Ekman) flow with the
end rings co-rotating with the outer cylinder, and a QK(q = 1.9)
profile with both rings in differential rotation. The Reynolds
numbers of the profiles are all approximately 5 × 105.

In the centrifugally unstable case, the turbulence is fully de-
veloped. There are no visible large scale flow patterns. As dis-
cussed in Burin et al. (2010) this lack of structure is consistent
with other experiments of supercritical flow at large Reynolds
numbers (Lewis & Swinney 1999). The QK(Ekman) case has
less structure than the QK(q = 1.9) flow, though we will
show in Sect. 4.4 that a larger Reynolds stress is present in the
QK(Ekman) flow. In the QK(q = 1.9) case the flow appears tur-
bulent within about 40 mm of the end ring boundary, but in the
bulk of the flow the uniform horizontal streaks indicate a qui-
escent flow. Note also that only in the QK(q = 1.9) case does
enough light reach the top ring to discern the upper turbulent
band. This demonstrates that the flakes are most aligned with
the rotation axis, consistent with the hypothesis that the velocity
shear is radial.

4.3. Radial profiles of quasi-Keplerian flows

A comparison of three quasi-Keplerian flows is plotted in Fig. 6.
The speeds of the inner and outer cylinders are 42.0 and
5.6 rad/s, respectively. The Reynolds number is Re = 5.5 × 105

and the nominal value for q = −(r̄/Ω̄)ΔΩ/Δr = 1.9. The end
rings rotate in the QK(Split), QK(Ekman), or QK(q = 1.9)
configurations.

Radial profiles of Vθ at several axial heights are plotted
in Fig. 7 for the QK(q = 1.9) configuration. The axial posi-
tions vary from 5 mm above the lower rings to the midplane
at 140 mm. The plotted profile is at Re = 3 × 105 with Ω1 =
21.0,Ω3 = 7.6,Ω4 = 2.1,Ω1 = 2.7 rad/s. The thickness of the
viscous Ekman layer is δEkman =

√
ν/Ω ∼ 4 mm. The profiles

indicate that the Taylor-Proudman theorem holds in the bulk of
the flow, but does not all the way to the end rings. This is es-
pecially true for the outer ring which is rotating slower than the
outer cylinder. The deviation from the mean profile near the in-
ner cylinder in the 5 mm data is due to an intermittent presence of
the boundary layer as it is ejected from the inner cylinder-inner

QK (Ekman)
QK (q=1.9)
QK (Split)

Fig. 6. 〈vθ〉 for three different centrifugally stable profiles at Re = 5 ×
105. The dashed line is the ideal Couette profile based on the cylinder
speeds, Ω1 = 42.0,Ω2 = 5.6 rad/s. The dotted lines are cubic spline
fits to the bulk flow. The innermost velocity measurement overlaps the
inner cylinder and is therefore not included in the interpolation. Both the
systematic and random errors in 〈vθ〉 are smaller than the marker size.

ring transition, see Schartman (2008). The plotted profile is sta-
ble by the Rayleigh criterion but two vertical shear layers are
present at the cylinder walls.

A detailed vertical scan was performed near the ring gap
to look for evidence of the Stewartson layer predicted by
Hollerbach & Fournier (2004). The results of that scan are plot-
ted in Fig. 8. The scan was performed at four radii: r = 123,
129, 134 and 140 mm which are shown in Fig. 4 as the verti-
cal dashed lines. For the radii 129, 134 and 140 mm the fluc-
tuations levels, σvθ/〈vθ〉, are comparable to the solid body fluc-
tuation amplitude which is plotted as the vertical dotted lines.
No evidence of a Stewartson layer is present near the ring gap
at 132 mm. For the points at r =123 mm, the fluctuation am-
plitude does not converge to the solid body value but remains
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Fig. 7. Radial profiles of vθ at several axial locations for an optimized
flow (QK(q = 1.9)) at Re ≈ 3 × 105. To facilitate viewing the profiles
have been offset. The increased fluctuation levels in the 5 mm scan near
the inner cylinder are due to the disruption of the boundary layer circu-
lation which occurs for differential rotation of the inner cylinder with
respect to the inner ring. For the innermost radial point at 72 mm, the
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Fig. 8. Azimuthal velocity fluctuation levels, σvθ/〈vθ〉, near the ring gap
for the QK(q = 1.9) profile at Re = 5 × 105 shown in Fig. 7. The
radial locations of the scans are diagrammed in Fig. 4. Triangles are the
QK(q = 1.9) profile. Shown for comparison are the solid body levels,
dotted lines and one axial location for a QK(Ekman) profile, squares.
Note that in the r = 123 mm panel, the solidbody line nearly overlaps
the left plot border.

slightly elevated through to the experiment midplane. The rea-
son for this is that a Stewartson layer does form in the vicinity of
the radius at which the end ring co-rotates with the bulk profile,
Ω3 = Ω(r = 123 mm). A single radial scan using a QK(Ekman)
profile is also plotted, marked by the squares. In the QK(Ekman)
configuration the end caps rotate with the outer cylinder and

Ideal Couette

Centrifugal stability

q

QK (Split)
QK (Ekman)
QK (q=1.9)

Fig. 9. q profiles for centrifugally stable flows used in the calculation
of β. The profiles are calculated using the spline fit presented in Fig. 6.
Schartman (2008) used a finite difference method to evaluate q produc-
ing comparable results. q profiles are also plotted for ideal Couette fow,
and marginal stability by the Rayleigh criterion q = 2. The stability
boundary derived by Rayleigh (1916) and Taylor (1923) do not account
for the presence of vertical boundaries. The oscillation in the QK(Split)
case which occurs between 140 and 180 mm is due to the measurement
of vθ beginning before the flow had fully equilibrated.

because of the absence of a stationary radius in the bulk flow,
the fluctuation level is comparable to the sold body level. The
fluctuation levels of the Stewartson layer at 123 mm are com-
parable to fluctuation levels over the outer ring in CUS flows in
which the outer cylinder is rotating (Schartman 2008).

To perform the measurement of β given in Eq. (10) we need
the Σrθ component of the Reynolds stress and a value for the lo-
cal exponent of angular velocity, q. Correlated two-component
LDV provides the measurement of Σrθ. We determine q from
the radial profiles of vθ plotted in Fig. 6. Because of the prox-
imity of the radial boundaries it is tempting to compute an av-
erage value based on the cylinder speeds: q ≈ −(r̄/Ω̄)ΔΩ/Δr.
Using this formulation, the three profiles in the figure have the
same value for q. A cursory inspection shows that the QK(Split),
QK(Ekman) and QK(q = 1.5) profiles do not share the same gra-
dient at r = 180 mm.

Instead we compute q based on a cubic-spline interpolation
of vθ. Determination of q was also done using a finite difference
scheme, see Schartman (2008) with similar results. The interpo-
lation of the profile is plotted as the dotted lines in Fig. 6. Radial
profiles of q for the QK(Split), QK(Ekman) and QK(q = 1.9)
configurations are plotted in Fig. 9. We note that the q value for
the QK(q = 1.9) configuration is actually larger than 2 near the
outer cylinder but without apparent local centrifugal instabilities.

4.4. Reynolds stress

Errors in the measurement of β are dominated by random and
systematic errors in 〈vrvθ〉. We reduced the random error by ac-
quiring of order 103 samples for each measurement. The system-
atic error is removed by subtracting the correlation level mea-
sured in a solid body profile. The sources of the systematic error
include any defects in the acrylic vessel and rings along the laser
optical path and any residual inherent correlations between the
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Fig. 10. Measurement of β for quasi-Keplerian profiles at r = 179 mm
and z = 62 mm or 74 mm. Horizontal dashed lines is the predicted range
of β from Richard and Zahn. The vertical dashed line is the estimate of
the transition Reynolds number predicted by Eq. (7).

two components of LDV systems as discussed in Sect. 3.3.1.
Example data and their comparisons can be found in Fig. 3
from Ji et al. (2006). The transport levels for linearly-stable pro-
files are plotted in Fig. 10. The measurements are performed at
r = 179 mm and z = 62 mm or z = 74 mm, but the results
are robust for other locations, see Fig. 3 from Ji et al. (2006) for
the z-dependence. The optimized QK(q = 1.9) and QK(q = 1.5)
configurations for Re > 106 are not consistent with Richard and
Zahn’s proposed transport level. Averaging the results for the
optimized configurations yields β = (1.13 ± 1.15) × 10−6 and
β < 3.4 × 10−6 at 2 standard deviations. Because negative val-
ues for β would indicate inward transport of angular momentum
(which we believe to be unphysical, as it would intensify rather
than extract energy from the shear), 2 standard deviations yields
98% confidence. The slight improvement of the transport limit
over the previously published result (Ji et al. 2006) is due to the
use of the local measurement of q and a correction for a small
angular misalignment of the LDV diagnostic.

Choices of the ring speeds other than the optimized values
have profound effects, through the global Ekman circulation,
on the mean flow profiles (Fig. 6) as well as on the Reynolds
stress, Σrθ. When the ring speeds are chosen to be equal to the
outer cylinder (the QK(Ekman) configuration), Σrθ is raised sig-
nificantly above the zero line as shown in Fig. 10, even above
the Σrθ value measured in the CUS 1 configuration which has a
local q below 2 in the bulk flow but with a centrifugally unstable
layer near the outer cylinder (the region C in Fig. 4). We note
that the Σrθ value in the QK(Ekman) configuration approaches
the level proposed by Richard & Zahn (1999). When the in-
ner (outer) ring rotates at the inner (outer) cylinder speed (the
QK(Split) configuration), Σrθ jumps to much larger values. It is
important to note that the QK(Split) configuration has stability
only with respect to the two cylinder speeds but is unstable lo-
cally, i.e. at the ring gap. Given this level of transport, the ob-
servations by Richard (2001), which uses the split configuration,
are likely to be caused by the influence of the end rings extending
throughout the fluid volume. As a side note, the axial boundary
conditions are also important for cyclonic flows briefly studied
in the Princeton MRI experiments. In the split configuration, ra-
dial profiles of these cyclonic flows deviated significantly from
the ideal Couette profiles with large fluctuations (Burin 2006),
and this subject is studied in detail by a followup experiment
(Burin & Czarnocki 2012).
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Fig. 11. A simplified Moody diagram for circular pipe flow. Only three
transport curves are shown: the laminar case, turbulence in a pipe with
smooth walls, and one choice of rough wall turbulence. For the rough
wall curve, the scale height of the roughness is 5% of the pipe diameter.
Below the minimum critical Reynolds number, a perturbed flow will
always return to the laminar state. A transition to the turbulent state is
marked by a discontinuity in the transport level. The minimum magni-
tude of the discontinuity in this case is approximately 2.

If a subcritical transition occurred in the range 3 × 105 <
Re < 2 × 106, what should we expect to see in Σrθ? Suppose the
transport follows the behavior of the normalized pressure drop,
or friction factor, plotted in the Moody diagram of pipe flow
(Moody 1944). A simplified moody diagram is reproduced in
Fig. 11 which displays only the laminar behavior and two tur-
bulent cases. The turbulent curves are the smooth wall case and
one rough wall case in which the scale height of the roughness
is 5% of the pipe diameter. A jump should occur at the transi-
tion from the laminar value to a value of order a few times the
laminar transport level. If the flow is bounded by rough walls
the friction factor should approach constant or logarithmic be-
havior when the viscous boundary layer becomes thinner than
the roughness scale height. This formed the basis of our astro-
physical extrapolation in Ji et al. (2006). However, our end caps
are not rough nor is rough-wall behavior applicable to accretion
disks. Instead, once the transition occurs the transport should
again be a decreasing function of Reynolds number. If a tran-
sition occurred in the proposed range we should see, according
to the Moody diagram, Σrθ jump to a factor of 2 to 4 above the
laminar transport level βvisc (where βvisc = ν/r̄3|∂Ω/∂r| = ν/2b
shown in Fig. 10) and then fall off as Re is further increased.
The absence of such a spike in Fig. 10 argues strongly against
the presence of a transition.

The source of the higher levels of transport associated with
the glycerol runs are hinted at by the time-averaged radial ve-
locities (Schartman 2008). Of the QK(q = 1.9) configurations,
only for these low Reynolds number experiments is v̄r statisti-
cally distinguishable from zero. For example, at Re = 2.2 × 104

with glycerol v̄r = −2.84 ± 0.35 mm/s, whereas for water
v̄r = 0.18 ± 0.17 mm/s at Re = 3.3 × 105. The vr distributions
for a glycerol run are compared to a water run and a solid body
water run in Fig. 12. At Re = 2.2 × 104, fluctuations are clearly
present in the negative tail of the distribution which give rise to
the non-zero value of v̄r. At the same speed but in water (so that
Re = 3.3 × 105), the fluctuations are more symmetric about the
mean and the mean radial velocity has fallen by a factor of two.
We interpret this to mean that the residual unsteady secondary
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Fig. 12. Probability densities of vr for QK(q = 1.9) configuration at
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in Fig. 10), QK(q = 1.9) configuration at Re ≈ 3.3 × 105 using wa-
ter (middle panel, labelled B in Fig. 10), and solid-body rotation (bot-
tom). Apparently larger standard deviations in the solid body flow (C)
than those in the QK flow in water (B) are due to the larger ΩOC in the
flow (C). The curves are Gaussian fits to the data, vertical lines are first,
second and third standard deviations from their means vr = v̄r . The data
were acquired at z = 75 mm. Note that non-Guassian tails at the level
of ≈0.2 are due to acrylic optical defects and not genuine characteristics
of the flows.

circulation penetrates deeper into the bulk flow at lower Re, con-
sistent with the results from numerical study by Obabko et al.
(2008) which was performed at relatively low Re.

5. Discussions and conclusions

When operating in the QK(q = 1.9) and QK(q = 1.5) con-
figurations with minimized Ekman effects we find no evidence
of significantly enhanced angular momentum transport due to
the r − θ component of the stress tensor, even at Re ∼ 106.
The absence of the measured transport efficiencies significantly
above their laminar counterparts provides no evidence for a
turbulent transition in our quasi-Keplerian flows in the range
104 < Re < 106 since turbulence should enhance the transport
to release the free energy it results from. If a subcritical tran-
sition occurs at a greater Reynolds number, experiments with
Poiseuille flow indicate that at the transition the amplitude of
the dimensionless turbulent transport will be a factor of a few
above the laminar viscous value which decreases as Re−1. The
tendency of the normalized turbulent intensity to vary inversely
with the critical Reynolds number has been confirmed for cy-
clonic flows, and also for anticyclonic flows to a lesser extent,
by the numerical simulations by Lesur & Longaretti (2005). We
therefore conclude that either a subcritical transition does not
occur, or, if a subcritical transition does occur, the associated
radial transport of angular momentum is too small to directly
support the hypothesis that subcritical hydrodynamic turbulence
is responsible for accretion in astrophysical disks.

This picture conflicts with the observations of Richard
(2001) in which flow imaging demonstrated a turbulent transi-
tion in quasi-Keplerian flow near Re ∼ 104. Richard attributes
the turbulence to SHI, but alternative hypotheses were not ruled
out. In particular, our measurements in Split end-cap operation
indicate that a detached shear layer is present above the inner

Fig. 13. Split end-cap operation at Re = 3 × 105. The dotted line is the
ideal Couette profile. The dashed lines are the solid-body speeds of the
end rings. Based on the cylinder speeds, the flow should be stable by
the Rayleigh criterion. Our beta measurement indicates that the bulk
flow is in a turbulent state. Only Rayleigh-unstable flows with the outer
cylinder at rest were observed to have greater levels of transport.

ring. Such layers are known to have a non-axisymmetric lin-
ear instability (Hollerbach 2003; Schaeffer & Cardin 2005). A
plot of QK(Split) configuration at Re = 3 × 105 is reproduced in
Fig. 13. Also plotted are the velocities of the end rings, as dashed
lines. A centrifugally unstable layer is present near the outer
cylinder therefore the flow in the vicinity of 200 mm is strongly
turbulent. This observation is confirmed by Σrθ measurement for
this flow: only in the CUS 2 case was a greater level of turbu-
lent transport observed. The inflection point at r ≈ 85 mm has
relaxed significantly from the solid body line of the ring which
indicates that this region is the source of the instability. The pre-
cise nature of the instability cannot be inferred from this satu-
rated flow. As noted, an inflection point is linearly unstable. But
it is also possible that flow undergoes an axisymmetric transi-
tion because the fluid in solidbody rotation with the end ring has
effectively increased the inner cylinder radius.

There are possible limitations in applying the our results
directly to astrophysical disks due to experimental geometry.
Typical cold and dense astrophysical disks, such as protostellar
disks, are geometrically thin, following the ordering r̄ ∼ Δr  h,
which contrasts with the scale ordering for our experimental ap-
paratus, where all three scales are similar, a point that was made
by one of our referees (Longaretti) as well as by Mukhopadhyay
& Saha (2011). We now discuss the role of experimental ge-
ometry on our conclusions, namely with respect to aspect ratio
(h/Δr) and normalized curvature (Δr/r̄).

The dependence of the subcritical transition and turbulent
transport on aspect ratio (h/Δr) is essentially unknown due to
the absence of a first-principles theory. However, conceptually,
in the absence of vertical friction, the vertical scale h should not
play a role in the transition Re or in radial turbulent transport due
to the instability’s origin in radial shear at least when h is larger
than both r and Δr, as it is in our experiment. In disks, h (scale
height of disk, or some fraction thereof due to stratification) may
play more of a role in limiting the size of the largest eddies (or
other structures) in the r−z plane (Dubrulle et al. 2005). How this
limitation would ultimately affect angular momentum transport
is unknown, though a reduction in transport may be implied.
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In experiments, the ratio h/Δr may serve as a proxy for
the strength of secondary flows due to viscous boundaries.
These secondary flows may perturb the flow and trigger in-
stability in subcritical flows – Richard (2001) and Paoletti &
Lathrop (2011) (see below) probably being examples of this.
These boundary-driven flows contribute to the radial momen-
tum transport. Examples to the contrary, where secondary flows
suppress instability and transport, are not known in high-Re
Taylor-Couette flow. Our end-cap controls, when optimized,
have allowed us to reach relatively high Re while maintaining
a quiescent state. Non-optimized end-cap conditions (similar to
those used by other expreriments with less controllable bound-
ary conditions), on the other hand, produce fluctuations due to
finite h. Thus our optimized velocity measurements, both mean
and fluctuating, are suggestive of ideal flow.

Even if h is insignificant, the role of curvature is not, and
it remains uncertain as to which radial length scale is relevant.
Richard & Zahn (1999) showed that the relevant length scale in
the cyclonic flows (based on Wendt 1933; Taylor 1936) changed
from Δr to r̄ for Δr/r̄ > 0.05. An inferred quadratic scaling
above this boundary yields Rec ∼ 6 × 105 for the parameters
of our experiment, a value which we have exceeded. Thus, even
taking into account the effects of flow curvature, the lack of the
evidence of turbulence in our results is significant. It is unclear
though to what extent scalings based on cyclonic data may be
applied to the anti-cyclonic quasi-Keplerian regime.

Recent experimental work by Burin & Czarnocki (2012) in
cyclonic flows illustrates that in experiments with large Δr, only
a fraction of the flow becomes turbulent, a fraction that reflects
the fact that the shear gradient in these experiments is local-
ized near one of the cylinders. Outside of this region the flow
remains laminar even well past Rec. Thus the scaling of Richard
& Zahn (1999) appears to be an overestimate. In any case, this
is not relevant to disks, where the balance between gravitational
and centrifugal forces enforces a nearly constant ratio of shear
to rotation.

One might ask a subtle but relevant question, as raised by an
anonymous referee, on whether our chosen axial boundary con-
ditions for the ideal Couette profile might limit the transition or
turbulent transport from occurring in the bulk flow. This question
is motivated by the fact that some well-known subcritical tran-
sitions in non-rotating flows are accompanied by large changes
in the mean flow; see a recent study in a plane Couette flow by
Krug et al. (2012). While it is not possible to completely rule out
such a possibility since the transition mechanism is not under-
stood, but it seems unlikely. The axial boundaries can influence
the bulk flow either through global Ekman circulation or through
local vertical vortex tubes in the spirit of Taylor-Proudman theo-
rem. The former process is slow on a timescale ∝Re−1/2 as shown
previously (Kageyama et al. 2004), and it is unlikely to be dy-
namically important for the transition in the bulk flow. The latter
process requires more rapid global rotation (Spence et al. 2012)
or a strong axial magnetic field in an electrically conducting fluid
(Roach et al. 2012); none of them applies here. In fact, the en-
hanced fluctuations observed near the axial boundaries (Figs. 5C
and 8) are indicative of the existence of a turbulent boundary
where Taylor-Proundman theorem should not apply.

As a final note, we briefly remark on a new paper (Paoletti
& Lathrop 2011) that we were informed just before our planned
submission of the present paper. The authors presented a β value
of (1.7±0.2)×10−5 inferred from torque measurements in quasi-
Keplerian flows at similar Reynolds numbers to ours. Since
this β value is significantly above ours from direct measure-
ments of Reynolds stress, it was claimed that a turbulent state

is seen. We point out, however, that the large β values measured
there are subject to the interpretation based on the Ekman effects
caused by axial end caps corotating with the outer cylinder. In
fact, their reported β value is only by a factor of 2 larger than
that of our QK(Ekman) flow (see Fig. 10), which has a reduced
Ekman circulation due to a disrupted boundary layer despite the
small aspect ratio (Schartman et al. 2009). Richard (2001) re-
ported significant Ekman effects in quasi-Keplerian flows with
corotating end caps (and also in the Split configuration) as indi-
cated by large deviations of the measured velocity profiles from
the ideal Couette solution (see his Fig. 4.2). Velocity profiles are
unreported in Paoletti & Lathrop (2011) but their aspect ratio
of 11.47 is smaller than ∼25 in Richard (2001), and thus should
be subject to stronger Ekman circulations. This latter point is
consistent with recent results from numerical simulations (Avila
2012) which were performed at Re significantly below experi-
mental values. The reported numerical results also showed tur-
bulence in the bulk flow in our experimental geometry at low Re.
However, these results do not necessarily contradict our data re-
ported in the present paper: the measured β values (e.g. the point
A in Fig. 10) are significantly larger at lower Re when using
glycerol mix even with optimal axial boundary conditions. We
interpret this to mean that the residual unsteady secondary cir-
culation penetrates deeper into the bulk flow at lower Re, but the
detailed Re dependence of secondary circulation is subject to fu-
ture studies. In any case, a quiescent flow, like quasi-Keplerian
flows, is more likely to be delicate (than e.g. turbulent flows),
and thus prone to be perturbed by imperfect axial boundary con-
ditions even at large aspect ratios.
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