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Kinematic dynamo induced by helical waves
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We investigate numerically the kinematic dynamo induced by the superposition of two helical waves in
a periodic box as a simplified model to understand the dynamo action in astronomical bodies. The effects
of magnetic Reynolds number, wavenumber and wave frequency on the dynamo action are studied.
It is found that this helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for
the dynamo growth rate. A lower wave frequency facilitates the dynamo action and the oscillations of
magnetic energy emerge at some particular wave frequencies.
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1. Introduction

Magnetic fields in astronomical bodies, e.g. planets, stars, galaxies and disks, are believed to
be generated by the dynamo action, the motion of electrically conducting fluid shearing and
twisting field lines to create new lines through the electromagnetic induction effect to offset
magnetic diffusion. In the natural dynamo action, rotation plays an important role because the
Coriolis force leads to a helical spatial structure of fluid flow and this helical flow facilitates
the dynamo action through the so-called α-effect, i.e. the fluid helical motion twisting field
lines. In convection-driven dynamo, either the large-scale columnar rolls in the Earth’s core
or the small-scale turbulent eddies in the solar interior have the helical structure (Busse 1978,
Glatzmaier and Roberts 2000, Zhang and Schubert 2000, Jones 2011). In mechanical force-
driven dynamo, e.g. dynamo driven by Couette flow or libration or precession or tide, the
inertial waves arising from the destabilisation of internal shear layers also have the helical
structure (Tilgner 2005, Guervilly and Cardin 2010, Wei et al. 2012). In rotating turbulence
with the lack of reflexional symmetry, the first-order smoothing result shows that the turbulent
electromotive force (e.m.f.) is proportional to the local mean field and the coefficient tensor
is correlated to fluid helicity, i.e. the scalar product of velocity and vorticity. This result was
independently discovered by Steenbeck et al. (1966) and Moffatt (1970a). Moreover, in Moffatt
(1970a) the correlation between the coefficient tensor and the turbulent helicity spectrum was
physically interpreted with helical waves. In Moffatt (1970b) the dynamics of fluid motion
with a uniform rotation was considered and the dynamo induced by superposition of random
inertial waves was analytically studied in both linear and weakly nonlinear regimes.
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In this short paper, we do not involve the fluid dynamics but focus on the kinematic dynamo
induced by helical waves (the kinematic dynamo induced by drifting wave was studied by
Tilgner (2008)). The fluid motion of one helical wave is planar (see the next section) and the
Zel’dovich anti-dynamo theorem states that a planar flow cannot generate the dynamo action.
Therefore, we use the superposition of two helical waves to induce the dynamo action, which
is a very simple model of the α2-dynamo. An interesting kinematic dynamo is the fast dynamo,
in which magnetic field grows on the advection time scale and the growth rate is independent
of the magnetic diffusion time scale. That is, the growth rate of a fast dynamo is finite when the
magnetic Reynolds number approaches infinity (Soward 1994, Childress and Gilbert 1995). For
example, the Roberts flow, a steady two-dimensional flow in a periodic box, generates a slow
dynamo (Roberts 1972) whereas the Galloway-Proctor flow, an oscillatory two-dimensional
flow in a periodic box, generates a fast dynamo (Galloway and Proctor 1992) (the sense of
“two-dimensional” is in respect of two coordinates but not two components), because “the
Roberts flow has no exponential separation of nearby points but Galloway-Proctor flow has
large stretching in large regions of the domain” (Proctor 2007).Another example of fast dynamo
in spherical geometry was given in Hollerbach et al. (1995). Whether the helical-wave dynamo
is a fast dynamo is one of the purposes of this study. The other two purposes are to study the
effects of wavenumber and wave frequency on the growth rate of dynamo. In section 2 the
problem is formulated, in section 3 the results are shown and in section 4, a short discussion
is given.

2. Formulation

We use the Cartesian coordinate system (x1, x2, x3). Suppose that we have a plane wave u
travelling in the x1-direction with wave vector k = k x̂1, frequency � and complex amplitude
û, i.e. u = Re{û exp[i(kx1 − � t)]}. For a helical wave satisfying ∇ × u = ku, the three
components of û are given to be

û = (0, û0, îu0), (1)

which indicates that the fluid motion induced by a helical wave has no component in the
direction of phase propagation but is circular in the plane perpendicular to phase velocity,
namely the helical wave is a transverse wave. We denote the wave amplitude |u| = |Re{û}| =
|̂u0| by u0. The helicity of a helical wave is then h = u · (∇ × u) = ku2

0.
We now consider the dynamo action in a periodic box. The dimensionless magnetic induction

equation reads
∂ B
∂t

= ∇ × (u × B) + Rm−1∇2 B, (2)

where the characteristic length is taken to be the box size l, the characteristic velocity to be
the wave amplitude u0 and the characteristic time to be the advection time l/u0. The magnetic
Reynolds number

Rm = u0l
/
η, (3)

where η is the magnetic diffusivity, measures the induction effect against the magnetic dif-
fusion. It should be noted that in Moffatt (1970a,b) the characteristic length was taken to be
the wavelength ∼ 1/k but not the box size such that dynamo occurs at a fairly low Rmwave,
corresponding to small-scale waves. If a uniform field B0 is imposed in the x1-direction then
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the electromotive force induced by this helical wave can be readily derived from the first-order
perturbation of magnetic induction equation, i.e.

u × b = − ηu2
0 B0k3

� 2 + η2k4
x̂1 = − ηB0k2

� 2 + η2k4
h x̂1, (4)

which indicates that the magnetic diffusivity is essential to the electromotive force. The detail
of this derivation can be found in Moffatt (1978). This expression will be used to interpret our
numerical results in the next section. It also implies that the imposed field and the induced
current have the opposite directions for a right-handed helical wave while they are in the same
direction for a left-handed helical wave.

The helical-wave dynamo is mathematically a linear eigenvalue problem and in principle
it can be solved with the Floquet analysis (Soward 1994). However, in the Floquet analysis
the coefficient matrix is huge and the numerical calculations are demanding. Therefore, we
use the time-stepping method to numerically solve the magnetic induction equation (2) with
a pseudo-spectral code in which the fast Fourier transform is done back and forth for the
calculation of the induction term and the diffusion term is treated implicitly for numerical
stability. A random initial field is given such that all the possible eigenmodes are involved
and then the equation will select the fastest growing mode. Because we do not know which
mode will be the fastest growing one in the dynamo action we calculate the total magnetic
energy to judge the onset of dynamo instability. Suppose that the magnetic field is expressed
as B(x, t) = Re{B̂(x) exp(σ t)} where B̂ is the complex amplitude and σ the complex growth
rate. The total magnetic energy can then be calculated as∫

V

1
2 B2dV

= 1
4 exp(2σr t)

∫
V

[(
B̂2

r + B̂2
i

) + (
B̂2

r − B̂2
i

)
cos(2σi t) − 2B̂r · B̂i sin(2σi t)

]
dV, (5)

where the subscripts r and i denote, respectively, the real and imaginary parts. Equation (5)
shows that the magnetic energy depends not only exponentially but also harmonically on time.

In most of numerical calculations in this paper we use the two helical waves, i.e.

u = u1 + u2 = Re
{
û1ei(k1x1−�1t)} + Re

{
û2ei(k2x2−�2t)}, (6)

where
û1 = (

0, û0, îu0
)

and û2 = (
îu0, 0, û0

)
. (7)

Because our computational domain is chosen to be [0, 2π ]3, the wavenumbers k1 and k2 are
integers to keep the periodicity. The flow u is two-dimensional in the sense that it depends on
two coordinates x1 and x2. Alternatively, we can also choose the flow to depend either on x2
and x3 or on x3 and x1, but our numerical calculations proved that this cannot influence the
growth rate of dynamo. It has also been proved that the phase of û0 cannot influence the growth
rate either, but the amplitude u0, the wavenumbers k1 and k2, and the wave frequencies �1 and
�2 can. In most of calculations we choose the identical wavenumbers and wave frequencies,
i.e. k1 = k2 and �1 = �2.

3. Results

This dynamo induced by two helical waves is an α2-dynamo, in which magnetic field is twisted
by two helical waves (one needs to note that magnetic field is always three-dimensional). The
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Figure 1. Growth rate of magnetic energy against Rm at k1 = k1 = 1 and �1 = �2 = 0.01 × 2π . Circle symbol
denotes σi = 0.

first test is about Rm. Figure 1 shows the growth rate of magnetic energy against Rm. It clearly
shows that the growth rate increases and then decreases with the increasing Rm. Rm = 35
corresponds to the maximum growth rate. When Rm is large enough the growth rate decreases
to zero, namely the helical-wave dynamo is a slow dynamo. As pointed out by Moffatt and
Proctor (1985) that fast dynamos with smooth (differentiable) magnetic fields do not exist,
the helical-wave dynamo is a slow dynamo because the flow stretching caused by the helical-
wave motion is not efficient enough such that magnetic field cannot grow on the fast advection
time scale at large Rm. On this curve, the two wavenumbers are 1 and the two frequencies
are 0.01 × 2π . The magnetic energy has only the exponential growth but not the oscillation,
i.e. σi = 0 in (5). The curves at other wavenumbers and frequencies are similar, only that Rm
corresponding to the maximum growth rate is different. The magnetic energy is always on a
large scale in both the x1 and x2-directions but has a smaller scale in the x3-direction when
Rm becomes higher.

Then we test the effect of wavenumber on the growth rate. Figure 2 shows the growth rate
of magnetic energy against wavenumber. Again, the magnetic energy has only exponential
growth, i.e. σi = 0. Both the subfigures at two different Rm’s indicate that there exists an
optimal wavenumber corresponding to the maximum growth rate. This can be qualitatively
interpreted with equation (4) which indicates that there exists an optimal wavenumber for the
α-effect. One may notice that the optimal wavenumber deduced from (4) depends on frequency
and diffusivity but not on u0 or Rm in the dimensionless form, and this is contradictory to the
numerical result as shown in figure 2, namely the two different Rms correspond to the two
different optimal wavenumbers. This is because equation (4) is for the α-effect induced by
the interaction of one helical wave and an externally imposed field, but in the helical-wave
dynamo the flow is the superposition of two helical waves, which leads to the cross terms
for the α-effect, and the magnetic field is not externally imposed but self-excited (see the last
paragraph in this section for details).

Next we test the effect of wave frequency on the growth rate. Figure 3 shows the growth rate
of magnetic energy against frequency. As the investigation of wavenumber, the two subfigures
are at two different Rms. Generally speaking, a higher frequency corresponds to a lower
growth rate, which is again qualitatively in agreement with (4). The dynamo fails when the
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Figure 2. Growth rate of magnetic energy against wavenumber k = k1 = k2 at �1 = �2 = 0.01×2π . (a) Rm = 20
and (b) Rm = 50. Circle symbol denotes σi = 0.

wave frequency is high enough. The maximum frequency to sustain the dynamo action is
higher at higher Rm. However, it is interesting that there exist some particular frequencies
(square symbol) leading to the oscillations of magnetic energy, i.e. σi �= 0. The average
of these oscillatory growth rates is plotted as the peaks on the curves. The structure of
magnetic field is determined by Rm and the wavenumber of helical wave but not by the
frequency of helical wave. Whatever frequency is, the magnetic energy is always on the large
scale.
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Figure 3. Growth rate of magnetic energy against frequency � = �1 = �2 at k1 = k2 = 1. (a) Rm = 20 and (b)
Rm = 50. Circle symbol denotes σi = 0 whereas square symbol denotes σi �= 0.

We then test some other cases. Firstly, we test dynamo induced by two helical waves with
different frequencies. It shows that the growth rate of two different frequencies is between the
two growth rates of two identical frequencies, e.g. σr of �1 = 0.01 and �2 = 0.05 is between
�1 = �2 = 0.01 and �1 = �2 = 0.05 (the other parameters are kept the same). Secondly,
we test dynamo induced by two helical waves with different wavenumbers. Similar to the
case of two different frequencies, the growth rate of two different wavenumbers is between
those of two identical wavenumbers. The helicity of two helical waves with different
wavenumbers is
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h = (u1 + u2) · ∇ × (u1 + u2) = (u1 + u2) · (k1u1 + k2u2)

= (k1 + k2)
(
u2

0 + u1 · u2
)
. (8)

If k1 + k2 = 0 then helicity vanishes. So thirdly, we test dynamo induced by two helical waves
with opposite wavenumbers. It shows that the dynamo with zero helicity is quite difficult to
be induced, i.e. the critical Rm of the zero-helicity dynamo is much higher than that of the
nonzero-helicity dynamo (with k1 = 1 and k2 = −1 dynamo fails until Rm = 100, and in
contrast, with k1 = k2 = 1 dynamo has occurred at Rm = 10). This indicates that helicity is,
though not necessary, helpful for the dynamo action (see equation (4)).

To end this section we compare the α-effect in the numerical calculation to that predicted
by the first-order smoothing theory in both cases of an imposed field and of a self-excited
dynamo. We firstly calculate the α-effect induced by the interaction of one helical wave and
an externally imposed uniform field. We use equation (7.62) in Moffatt (1978) for velocity,
namely u = (sin(kx3 − � t), cos(kx3 − � t), 0) and the uniform field is B0 = (0, 0, 1). The
numerical result exactly conforms to the first-order smoothing theory, i.e. the e.m.f. u × b
is a constant predicted by equation (7.70) in Moffatt (1978). We next calculate the α-effect
induced by the interaction of three helical waves and an externally imposed uniform field. We
use equation (9.47) in Moffatt (1978) for velocity, in which three stationary (zero-frequency)
helical waves are superposed, namely u1 = (sin kx3, cos kx3, 0), u2 = (0, sin kx1, cos kx1)

and u3 = (cos kx2, 0, sin kx2), and the uniform field is B0 = (1, 1, 1). The numerical result
shows that the e.m.f. is not a constant but depends on position. This is because the e.m.f.
consists of not only the auto-correlation terms such as u1 × b1, which induces a constant α, but
also the cross-terms such as u1 × b2, which induces the α as a function of position. We finally
calculate the α in the dynamo induced by the above three stationary helical waves. Because
the first-order smoothing theory works better for smaller Rmwave, we choose Rm = 10 and
k = 40 such that Rmwave = 0.25, which is pushed to the limit of computational facility (lower
Rmwave requires higher k and thus higher resolution). The theory predicts that α should be
isotropic and its dimensionless value is −Rm/k = −0.25 as predicted by equation (9.49) in
Moffatt (1978). The numerical result shows that the spatially averaged magnetic field in the
dynamo is zero and magnetic energy is mainly on the K = 0 and 1 modes. So we define the
large-scale field B0 to consist of only the K = 0 and 1 modes. It should be noted that B0 is
not uniform but a function of position. The e.m.f. is calculated as u × b = u × (B − B0)

and it is also a function of position. We then check whether all the three components at all the
positions conform to the expression (u × b)i/B0i = −0.25 (i = 1, 2, 3). This does not hold.
The reason for this discrepancy could be that the first-order smoothing theory works in the
regime of Rmwave � 1 but Rmwave = 0.25 is far away from the regime where the first-order
smoothing theory works. The α-effect in the first-order smoothing theory is derived with the
approximation that the scale of magnetic field is separable and the large-scale field B0 can be
regarded as uniform compared to small-scale flow u and field b. However, if Rmwave is not
sufficiently small, then neither u nor b can be considered as having a sufficiently small scale,
and moreover, B0 is no longer at a sufficiently large scale such that it cannot be considered as
uniform.

4. Discussion

In this short paper we numerically investigate the kinematic α2-dynamo induced by two helical
waves. This helical-wave dynamo is a slow dynamo. There exists an optimal wavenumber for
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the dynamo growth rate. Slower helical waves are better to the dynamo action. The oscilla-
tions of magnetic energy can be triggered at some particular wave frequencies. These results
might give some hints for understanding the geophysical and astrophysical magnetic fields. The
thermal Rossby waves in convection-driven dynamo, and the inertial waves in precession- or
tide-driven dynamo, and the magneto-inertial waves in magneto-rotational instability-driven
dynamo are all helical waves because of the presence of rotation. In these helical-wave
dynamos, it can be inferred that the dynamo efficiency is the highest at some particular length
and time scales of waves. It can be also inferred that in the Earth’s core the slow magnetostropic
waves are more powerful for the geodynamo than the fast inertial waves. This work is an
numerical experiment which is expected to give some hint for the theoreticians to extend the
theory of helical-wave dynamo, e.g. the asymptotic power law for the growth rate at Rm → ∞.
The further work is to involve the Navier–Stokes equation in the helical-wave dynamo to test
the analytical results in Moffatt (1970b).
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