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ABSTRACT

To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow
driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB
approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various
parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the
magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic
field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but
the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are
asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field.
It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional
to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales
is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the
dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the
magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is
constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.
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1. INTRODUCTION

Tides exist widely in binary systems, e.g., the Earth and
Moon, binary stars, exoplanets and host stars, etc. The tidal
torque transfers angular momentum between the orbital motion
and the rotational motion of the binary components such that
the orbital and rotational frequencies eventually become equal
(synchronization) and the orbit eventually becomes circular
(circularization). In the process of synchronization and
circularization, the dissipation in the fluid interior of the star
or planet plays an important role. There are two parts of the
response to the tidal force, the wave part and the non-wave
part. The non-wave part is a large-scale deformation in the
quasi-hydrostatic balance, called the equilibrium tide. The
wave part is the fluid waves excited by the tidal force, referred
to as the dynamical tide. Because the dynamical tide has a
much smaller length scale than the equilibrium tide, it can be
more important for the tidal dissipation. When the eigenfre-
quencies of these waves are close to the frequency of the tidal
force, resonance occurs, at which the response and the
dissipation are greatly increased.

For the dynamical tide, sound waves and surface gravity
waves have frequencies that are too large to be resonantly
excited, but internal gravity waves due to density stratification
and inertial waves due to rotation can be excited. When the
tidal frequency is close to the buoyancy frequency, internal
gravity waves are excited in the stably stratified region (e.g.,
the radiation zone). When the tidal frequency is close to the
rotational frequency, inertial waves are excited. The problem of
the dynamical tide in stellar interiors was first considered by
Cowling (1941). Internal gravity waves were studied by Zahn
(1975) and then applied to an interpretation of the angular
momentum transfer in the stellar radiation zone by Goldreich
(1989) and Goodman & Dickson (1998). Later, internal gravity
waves due to a compositional jump were studied by Fuller &

Lai (2011). The problem of the inertial waves in spherical
geometry is more difficult because, first, rotation breaks the
spherical symmetry of the equation of fluid motion such that
the radial and colatitude directions are coupled (for compar-
ison, the equation of the internal gravity waves can be reduced
to a one-dimensional eigenvalue problem in the radial
direction), and second, the governing equation (Poincaré
equation) of the inviscid inertial waves is singular at the
critical latitude, and viscosity smooths singularity such that the
inertial waves are spawned at the critical latitude and propagate
in the thin shear layers because of wave reflection, i.e., the
wave attractors (Busse 1968; Hollerbach & Kerswell 1995;
Rieutord & Valdettaro 1997; Ogilvie 2005; Tilgner 2007, pp.
208–243; Zhang et al. 2014). Recently, tidally excited inertial
waves were studied both analytically and numerically by
Ogilvie (2004), Wu (2005a, 2005b), Goodman & Lackner
(2009), Favier et al. (2014), etc. Studies of dynamical tides
were summarized in the review paper by Ogilvie (2014).
However, magnetic effects on dynamical tides have not been

extensively studied. Kerswell (1994) once studied the
magnetohydrodynamic (MHD) waves excited by the tide in
the Earthʼs core and focused on the elliptical instability, and the
magneto-elliptic-rotational waves were also studied in
Goodman (1993), Mizerski & Bajer (2009, 2011), and
Mizerski et al. (2012), but there have been few studies on
magnetic dynamical tides, i.e., the magneto-inertial waves.
Although the magnetic field is not strong on the stellar surface,
it might be strong in the stellar interior because of the dynamo
action. Moreover, even if the magnetic field is insignificant for
the equilibrium state (in the sense that the magnetic pressure is
small compared to the thermal pressure), it can be important for
the dynamics of, say, the first-order perturbation. As is known,
magnetically modified inertial waves (i.e., the magneto-inertial
wave) have very different frequencies from non-magnetic
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inertial waves. In addition, inertial or magneto-inertial waves
with helical spatial structure can support dynamo action
through the α effect to reinforce the magnetic field
(Moffatt 1970a, 1970b; Wei 2014). Therefore, the magnetic
field and the waves are mutually interacting.

In this paper we will study the magnetically modified inertial
waves (i.e., magneto-inertial waves) excited by the tidal forcing
and focus on resonances. We will use the simplified geometry
of a periodic box to perform our study. The purpose is to
understand how the magnetic field influences the resonant
frequency and hence the tidal dissipation. Both the kinetic
dissipation and the Ohmic dissipation will be studied. In
Section 2 the linear response to the tidal forcing in the rotating
MHD flow is derived and the resonant frequencies are given. In
Section 3 the explicit expressions for the calculation of the tidal
dissipation are given in the dimensionless form. In Section 4
the results of the rotating hydrodynamic flow in the absence of
magnetic field are shown. In Section 5 the results of the rotating
MHD flow in the presence of magnetic field are shown. In
Section 6 some astrophysical applications are discussed. In
Section 7 a brief summary and some further discussions are
given.

2. LINEAR RESPONSE AND RESONANT FREQUENCY

Because the frequencies of sound waves are too high to be
resonantly excited by the dynamical tide, we study the
incompressible fluid. The derivation of the unforced rotating
MHD system can be found in Section 10.2 in Moffatt (1978).
We extend this derivation to the forced system. The Navier–
Stokes equation of the incompressible MHD in the rotating
frame at the constant angular velocity W reads
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where the induced pressure p includes the centrifugal force
W ´ x 22∣ ∣ and the magnetic pressure mB 22 ( ). The continuity
equation of the incompressible fluid reads

 =u 0. 2· ( )

The magnetic induction equation reads
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¶
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The solenoidal condition of the magnetic field is

 =B 0. 4· ( )

We then assume that the length scales of spatial variation of the
background flow u0 (i.e., the mean flow) and the background
field B0 are much larger than those of perturbations such that u0

and B0 can be considered to be uniform. This is the local WKB
approximation. Suppose that

= + = + = +u u u B B Bp p p, , , 50 1 0 1 0 1 ( )

where u1, p1, and B1 are the first-order Eulerian perturbations.
The substitution of (5) into the Navier–Stokes and magnetic

induction equations with the neglect of quadratic terms yields

r
n

rm

 

W 

¶
¶

+ =- +  +

´ + +

u
u u u u

B B f

t
p

1
2

1
, 6

1
0 1 1

2
1 1

0 1

·

· ( )

where f is the force to excite waves and corresponds to the
tidal force. It should be noted that the external force appears
only in the perturbation equation. The perturbed magnetic
induction equation reads

h ¶
¶

+ = + 
B

u B B u B
t

. 71
0 1 0 1

2
1· · ( )

We then take out a small piece of region in the stellar or
planetary interior. The size of this region is small compared to
the length scale of the background flow and field such that this
region can be considered to be subject to the periodic boundary
condition. Moreover, we assume that the driving force is a
single traveling wave on top of the background flow, namely

R w= - +f f k x u ki texp , 80{ˆ [ ( · ( · ) )]} ( )

where f̂ is the complex amplitude, k is the wavevector, ω is the
frequency and R denotes taking the real part. Because it is a
linear problem, Equations (6) and (7) admit the solution of the
form

R w= - +u B u B k x u kp p i t, , , , exp .
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Substituting (9) into (7), we derive
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Substituting (9) into (6), and using (10), we are led to
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The background magnetic field, viscosity, and magnetic
diffusivity are entirely contained in the coefficient σ. We can
express σ in the simpler form,

s w n
w
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w
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is the frequency of the Alfvén wave. In the absence of the
magnetic field, w = 0B , the problem reduces to the tidal
resonance of an inertial wave in the rotating hydrody-
namic flow.
To give the driving force, f , we come back to the tidal force

for which f models. The tidal force is the difference between
the force exerted by the perturbing body on any point in the
interior of the primary body and the force exerted by the
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perturbing body at the center of the primary body. It can be
derived from the tidal potential, i.e., the superposition of
spherical harmonics with harmonic dependence on time in
terms of the Doppler-shifted frequency (Ogilvie 2014). So the
tidal force is curl-free. However, its contribution to the
dynamical tide is vortical because of the slow equilibrium tide
(see the details in Appendix B of Ogilvie2005). Briefly
speaking, the incompressible equilibrium tide varies slowly and
does not satisfy the hydrostatic balance such that the residual is
a vortical force that can drive the dynamical tide, e.g., the
inertial waves in rotating fluid. In our model, f corresponds to
the force responsible for the dynamical tide and it is not curl-
free but vortical. On the other hand, to have the dynamical
effect on an incompressible flow, the driving force f cannot be
curl-free (if it is curl-free then it will be absorbed into the
pressure term and act as the additional pressure). Although any
vortical force can act as the driving force, f , we assume the
driving force to be helical, i.e., vorticity is parallel to velocity
such that the vortical effect reaches the maximum, namely
helicity (the dot product of velocity and vorticity) reaches the
maximum. One may argue that the helical force is too artificial.
Here we give two reasons. First, this assumption is for
simplicity to derive the solution (see the next derivations), and
this simplicity does not make the physics of the tidal problem
become lost. Second, any vector field can be decomposed into
the curl-free part and the divergence-free part, i.e., the
Helmholtz decomposition. The divergence-free part can be
further decomposed into helical modes (see Waleffe1992).
Back to the driving force f , the curl-free part can be absorbed
into the pressure gradient and the divergence-free part can be
expressed as the superposition of helical forces. For a linear
problem, we study the tidal wave excited by a single helical
force. This is the reason that we use the helical force for the
study of tidal waves. Consequently, f satisfies

´ =k f fi k . 15ˆ ˆ ( )
Performing ´k on (11) to eliminate pressure and using

=k u 0· ˆ (incompressible fluid) and (15), we derive

s W- ´ - = -k u k u fi ik2 . 16ˆ ( · ) ˆ ˆ ( )

Performing ´k again on (16), we derive
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Combining (16) and (17) to eliminate ´k û leads to
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According to (13), in the presence of small viscosity ν or
magnetic diffusivity η in the real geophysical and astrophysical
fluids, σ cannot be a real number such that the non-zero factor

sW -k k2( · ) can be canceled, and thus we are led to
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We can express the solution in the simpler form
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is the frequency of inertial wave. Equation (20) is the solution
of the linear response, where σ is given by (13).
In Equation (20) the singularity cannot occur, i.e., s w¹ - W,

due to the presence of viscosity or magnetic diffusivity (see
Equation (13)). However, the response û becomes very strong
at some particular forcing frequencies when the condition
s w= - W is satisfied with both viscosity and magnetic
diffusivity neglected. This situation is called the resonance.
Accordingly, the frequency ω given by

w
w
w

w- = - W 22B
2

( )

is the resonant frequency. In the rotating hydrodynamic flow,
the magnetic field is absent and Equation (22) yields only one
resonant frequency, i.e., the inertial wave

w w
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In the rotating MHD flow, the quadratic Equation (22) yields
two resonance frequencies, i.e., the magneto-inertial waves,
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In the case of W >k 0· , the positive solution w+ and the
negative solution w- satisfy

w w w< < <- +0 . 250 ( )

In the case of W <k 0· , the sorting becomes

w w w< < <- +0 . 260 ( )

In both the cases, it follows that

w w w< <- +. 270 ( )

This indicates that the presence of magnetic field broadens the
range of the resonant frequency of rotating hydrodynamic flow,
such that the tidal resonance with magnetic field has a higher
possibility of occurring.
A special case of magneto-inertial wave is the magnetos-

trophic wave with the neglect of ¶ ¶u t in the perturbed
Navier–Stokes equation, i.e., the magnetostrophic balance of
pressure gradient, Coriolis force and Lorentz force. This
magnetostrophic wave is slow and long, and may contribute
to the geodynamo in the Earthʼs fluid core. The readers who are
interested can find the details about this wave in Moffatt
(1978), Schmitt (2003), Wei (2009), and Davidson (2013).

3. DISSIPATION, DRIVING FORCE, AND
NORMALIZATION

For astronomy and astrophysics, tidal dissipation is paid
more attention than tidal response because the former
determines the orbital evolution of binary system. We now
calculate the dissipation. With the periodic boundary condition,
the volume-averaged kinetic dissipation Dk can be calculated as

ò rn
rn= ´ = ´u k uD

V
dV i

1

2
, 28k 1

2 2∣ ∣ ∣ ˆ∣ ( )

where û is given by (20). In the MHD flow, in addition to the
kinetic dissipation, the Ohmic dissipation is important and it
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can be calculated as
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In the above derivation, Equation (10) is used.
To explicitly calculate the dissipations, we use the Cartesian

coordinate system (x y z, , ) and the small piece of region is
considered as a periodic cube with its size being l. Thus, the
wavevector is given to be

p p p= =k k k k n l n l n l, , 2 , 2 , 2 , 30x y z x y z( ) ( ) ( )

where nx, ny, and nz are integers for periodicity. In the local
coordinate system, we choose the z axis along the angular
velocityW and the plane ofW and B0 to be the x–z plane (if B0

is parallel or anti-parallel to W, then the x axis is arbitrary as
long as it is perpendicular to the z axis). Therefore, B0 is
expressed as

a a=B B Bsin , 0, cos , 310 0 0( ) ( )

where α is the angle between W and B0.
We also need to find the explicit expression of f̂ .

Equation (15) is degenerate (i.e., only two components are
independent) and yields
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We denote the force amplitude by a, i.e.,

* * *= + + = + + =f f f f f f f f f f a,
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where * denotes the complex conjugate. Equations (32) and
(33) then combine to yield

=
+

=
+

=
+

f
k k

k
a f

k k

k
a

f
k k

k
a

2
,

2
,

2
, 34

x
y z

y
z x

z
x y

2 2 2 2

2 2

∣ ˆ ∣ ∣ ˆ ∣

∣ ˆ ∣ ( )

and in addition, the arguments of f fy x
ˆ ˆ and f fz x
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The arguments of fx̂, fŷ, and fẑ themselves are insignificant for
the volume integral of energy and dissipation, but the
differences between them do matter, so the argument of fx̂ is
given to be 0. Thus, Equations (34) and (35) give the three
components of the complex amplitude f̂ .

Usually, the dimensionless calculation is preferred because it
is more physically meaningful. We normalize length with l,
time with W-1, velocity with Wl , force amplitude with Wl 2,
magnetic field with B0, and the two dissipations Dk and Dm

with r Wl2 3. For simplicity we use the notation of the
dimensional quantities for the dimensionless quantities, but
we need to keep in mind that from now on all the physical
variables are dimensionless. The dimensionless version for the
calculation of Dk and Dm is then translated to be
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In the above dimensionless equations, the Ekman number

n
=

W
E
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( )

measures the ratio of the rotational timescale to the viscous
timescale, which is very small in the stellar and planetary
interiors ( E 1), the Lehnert number

rm
=

W
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B

l
410 ( )

measures the ratio of the rotational timescale to the Alfvénic
timescale, and the magnetic Prandtl number

n
h

=Pm 42( )

measures the ratio of viscosity to magnetic diffusivity. The
dimensionless resonant frequency of the rotating hydrodynamic
flow is

w = -
k
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The two resonant frequencies of the rotating MHD flow are
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Because it is a linear problem, the dissipation scales as the
square of the force amplitude, i.e., µD a2. Thus we fix a=1
in this paper. In the next two sections we will calculate Dk (36)
and Dm (37) according to (38) and (39).

4. RESULTS OF THE ROTATING
HYDRODYNAMIC FLOW

Before studying the rotating MHD flow, we study the
rotating hydrodynamic flow in the absence of magnetic field,
i.e., =Le 0. In this case, the resonance occurs at

w = -
k

k

2
. 45z

0 ( )
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Therefore the orientation of the force wavevector determines
the resonant frequency and the dissipation. We try first the
lowest wavenumbers = = =n n n 1x y z , so the resonant

frequency is w = - » -2 3 1.15470 . Figure 1 shows the
kinetic dissipation Dk versus the force frequency ω. It reveals
that the dissipation becomes very strong at the resonant
frequency −1.1547. It also suggests that the dissipation at the
resonant frequency is stronger at the lower E but the dissipation
at the other frequencies is weaker at the lower E.

By virtue of (38) and (39) we can explicitly derive the
velocity at the resonant frequency w = - k k2 z0 to be

=u f
Ek

1
. 46

2
ˆ ˆ ( )

This indicates that the kinetic dissipation µ uD Ekk
2 2∣ ˆ∣ at the

resonant frequency scales as

µ - -D E k . 47k
1 2 ( )

We then study the effect of the force wavenumber on the
dissipation. We keep the orientation of the force wavevector,
i.e., = =n n nx y z, but increases its magnitude such that the
resonant frequency is always w = - » -2 3 1.15470 (chan-
ging its orientation simply shifts the resonant frequency).
Figure 2 shows Dk versus wavenumbers = = =n n n nx y z . In
addition to the dissipation at the resonant frequency we also
calculate the dissipation at the other two frequencies, −1.15
and −1.16, which neighbor the resonant frequency (one is
greater and the other is less than the resonant frequency). This
verifies that µ -D kk

2 at the resonant frequency. Moreover, the
dissipation at the other frequencies scales as k2 for the low
wavenumbers and becomes equal to the dissipation at the
resonant frequency for the high wavenumbers (in this case for
the wavenumbers higher than 20). In this sense, the resonance
takes its effect on the dissipation at intermediate length scales
(large compared to the box size but still much smaller than the
length scale of the background flow and field). The
wavenumber at which the non-resonant dissipation reaches its
peak can be roughly estimated by w w» -k Epeak 0∣ ∣ ,
which is derived by equating the derivative of Dk to zero
(see (36), (38), (39)).

Equation (47) also indicates that the kinetic dissipation Dk at
the resonant frequency scales as -E 1. Figure 3 shows that the
kinetic dissipation at the resonant frequency scales as -E 1, and
at the other frequencies the kinetic dissipation scales as E at
low E and reaches the level of the resonant frequency at the
high E. In this sense, the resonance takes its effect on the
dissipation on small Ekman number.

5. RESULTS OF THE ROTATING MHD FLOW

After studying the rotating hydrodynamic flow, we move to
the rotating MHD flow. First we fix = -E 10 6, =Le 1,

=Pm 1, a = 45 , and ( = = =n n n 1x y z ) to study the
dependence of resonance on frequency. The two resonant
frequencies are then 8.3272 and −9.4819 (see Equation (44)),
both of which are out of the range of inertial waves

 w-2 2( ). According to Equation (44) the two resonant

Figure 1. Rotating hydrodynamic flow. The kinetic dissipation Dk vs. the force
frequency ω. The black, red, green, and blue lines respectively denote
= -E 10 3, -10 4, -10 5, and -10 6. = = =n n n 1x y z .

Figure 2. Rotating hydrodynamic flow. The kinetic dissipation Dk vs. the force
wavenumbers = = =n n n nx y z . The solid line denotes the resonant
frequency w = - » -2 3 1.15470 , the dashed line represents w = -1.15,
and the dashed–dotted line represents w = -1.16. The two blue straight lines
show the two scalings -n 2 and n2. = -E 10 6.

Figure 3. Rotating hydrodynamic flow. The kinetic dissipation Dk vs. the
Ekman number E. The solid line denotes the resonant frequency
w = - » -2 3 1.15470 , the dashed line represents w = -1.15, and the
dashed–dotted line represents w = -1.16. The two blue straight lines show the
two scalings -E 1 and E. = = =n n n 1x y z .
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frequencies are almost proportional to Le for high Le. Since the
two resonant frequencies at =Le 1 are already out of the range
of inertial waves, =Le 1 is high enough for the rotating MHD
flow to be different from the rotating hydrodynamic flow.
Figure 4 shows the kinetic and Ohmic dissipations versus the
force frequency. We can clearly see that the dissipations reach
their peaks at the two resonant frequencies and their minima at
w = 0. To understand the difference between the kinetic and
Ohmic dissipations at w = 0, we come back to Equations (36)
and (37). The two expressions differ by a pre-factor. When
w = 0, the denominator of the expression of Dm (37) is very
small because of the small Ekman number. Therefore, even if
Dk is almost zero at w = 0, Dm is finite because of the very
small denominator. Physically, it implies that a very low tidal
frequency cannot lead to viscous dissipation, but does lead to a
certain amount of Ohmic dissipation. Moreover, as shown in
Table 1, at the positive resonant frequency Dm is higher than Dk

whereas at the negative resonant frequency Dk is higher than
Dm, but Dm remains the same at both the positive and negative
resonant frequencies. So we can sort the four dissipations as

> = >- + - +D D D Dk m m k , which we will see later in this section.
We next study the effect of the force wavenumber on the

dissipations at the resonant frequencies. We keep the
parameters the same as in the above study about the force
frequency, i.e., = -E 10 6, =Le 1, =Pm 1, and a = 45 . As
in the study of the rotating hydrodynamic flow, we keep the
orientation of wavevector, i.e., = =n n nx y z, but increase its
amplitude. However, the MHD case is different from the
hydrodynamic case in which the resonant frequency is
determined merely by the orientation of the wavevector.
Now, in the rotating MHD flow, the resonant frequencies
depend on both the orientation and the magnitude of
wavevector (see Equation (44)). So we first need to calculate
the two resonant frequencies at the given wavenumbers and
then the dissipations at the two resonant frequencies. Figure 5
shows the two dissipations versus the wavenumbers at the
corresponding resonant frequencies. We can see that at the low
wavenumbers > = >- + - +D D D Dk m m k , but at the high wave-
numbers all four lines overlap, namely Dk and Dm at both the
positive and negative resonant frequencies are equal on the
small scales (in this case at the wavenumbers higher than 20).

Moreover, all four dissipations scale as -k 2, which obeys the
same scaling law of the rotating hydrodynamic flow. Again, in
the rotating MHD flow, the resonance takes its effect on the
dissipation at intermediate length scales.
We now study the resonance at the different dimensionless

parameters E, Le, and Pm, and the angle α. First we fix =Le 1,
=Pm 1, and a = 45 to study E. Because we have already

known that the resonance is significant on relatively large
length scales, we fix the wavenumbers to be the lowest, i.e.,

= = =n n n 1x y z . Figure 6 shows Dk and Dm versus E at the
two resonant frequencies. It shows that both Dk and Dm at both
the positive and negative resonant frequencies scale as -E 1,
which obeys the same scaling law of rotating hydrodynamic
flow. It also shows that > = >- + - +D D D Dk m m k . In summary,
in rotating MHD flow, both Dk and Dm at the resonant
frequencies scale as

µ - -D D E k, . 48k m
1 2 ( )

Next we keep E, Pm, α and the force wavenumbers to study
Le. We increase Le from -10 2 to 102. Because the resonant
frequencies depend on Le (see Equation (44)), we first need to
calculate the two resonant frequencies for the different Lehnert
numbers and then the dissipations at the two resonant
frequencies. Figure 7 shows Dk and Dm versus Le at the two
resonant frequencies with the corresponding Le. As before, +Dm
and -Dm are equal. At high Le (>10), all four dissipations are
almost equal. But at low Le (< -10 1), the kinetic dissipation at
the negative resonant frequency -Dk is dominant, the kinetic
dissipation at the positive resonant frequency +Dk is negligible,
and the Ohmic dissipation Dm is in-between, i.e.,

Figure 4. Rotating MHD flow. The kinetic dissipation Dk (black line) and the
Ohmic dissipation Dm (red line) vs. the force frequency ω. = -E 10 6, =Le 1,

=Pm 1, a = 45 , and ( = = =n n n 1x y z ).

Table 1
The Rotating MHD Flow

ω 8.3272 −9.4819
Dk ´0.9230 103 ´1.1967 103

Dm ´1.0510 103 ´1.0510 103

Note.Dk and Dm versus the two resonant frequencies. The other parameters are
the same as in Figure 4.

Figure 5. Rotating MHD flow. The kinetic dissipation Dk (black lines) and the
Ohmic dissipation Dm (red lines) vs. the force wavenumbers = = =n n n nx y z

at the two resonant frequencies. The solid lines denote the positive resonant
frequency and the dashed lines denote the negative resonant frequency. The
blue straight line shows the scaling -n 2. = -E 10 6, =Le 1, =Pm 1,
and a = 45 .
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> >-  +D D Dk m k . Moreover, at lower Le this asymmetry is
more striking. In the rotating hydrodynamic flow there is only
one resonant frequency (w = - k k2 z0 ) but in the rotating
MHD flow the dissipations are asymmetric to the positive and
negative resonant frequencies w. Therefore, this asymmetry
apparently arises from the magnetic field.

We then study the magnetic Prandtl number n h=Pm ,
which measures the relative strength of the two dissipation
mechanisms. As usual, we keep E, Le, α, and the force
wavenumbers but increase Pm from -10 2 to 102. Figure 8
shows Dk and Dm versus Pm at the two resonant frequencies. It
is not surprising that the viscous (or Ohmic) dissipation is
higher than Ohmic (or viscous) dissipation at >Pm 1 (or

<Pm 1) and the two dissipations are close to each other at
=Pm 1. However, it is interesting that with Pm increasing, Dk

increases monotonically, whereas Dm increases until =Pm 1

and then decreases. Moreover, >+ -D Dm m at >Pm 1, >- +D Dm m
at <Pm 1, and =+ -D Dm m at =Pm 1. In geophysical and
astrophysical MHD flows, <Pm 1, so Ohmic dissipation is
more important than viscous dissipation.
We next study the angle α between the rotation and the

magnetic field. Figure 9 shows Dk and Dm versus α with the
other parameters fixed. At a = 135 and 315°, -Dk at the
negative resonant frequency dominates while the other three
dissipations are negligible. These two angles for the maximum
and minimum of the dissipations are determined by the
orientation of the wavevector, i.e., the factor
( a a+k ksin cosx z ) in the formulae to calculate dissipations.
The two angles can be deduced to be

p p- -k k k karctan and 2 arctan , 49z x z x( ) ( ) ( )

which indicates that the wavevector is perpendicular to the
magnetic field. Moreover, when k is perpendicular to B0 the

Figure 6. Rotating MHD flow. The kinetic dissipation Dk (black lines) and the
Ohmic dissipation Dm (red lines) vs. the Ekman number E at the two resonant
frequencies. The solid lines denote the positive resonant frequency and the
dashed lines denote the negative resonant frequency. The blue straight line
shows the scaling -E 1. =Le 1, =Pm 1, and a = 45 . = = =n n n 1x y z .

Figure 7. Rotating MHD flow. The kinetic dissipation Dk (black lines) and the
Ohmic dissipation Dm (red lines) vs. the Lehnert number Le at the two resonant
frequencies. The solid lines denote the positive resonant frequency and the
dashed lines denote the negative resonant frequency. = -E 10 6, =Pm 1, and
a = 45 . = = =n n n 1x y z .

Figure 8. Rotating MHD flow. The kinetic dissipation Dk (black lines) and the
Ohmic dissipation Dm (red lines) vs. the magnetic Prandtl number Pm at the
two resonant frequencies. The solid lines denote the positive resonant
frequency and the dashed lines denote the negative resonant frequency.
= -E 10 6, =Le 1, and a = 45 . = = =n n n 1x y z .

Figure 9. Rotating MHD flow. The kinetic dissipation Dk (black lines) and the
Ohmic dissipation Dm (red lines) vs. the angle α at the two resonant
frequencies. The solid lines denote the positive resonant frequency and the
dashed lines denote the negative resonant frequency. = -E 10 6, =Le 1, and

=Pm 1. = = =n n n 1x y z .
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Alfvén frequency wB will be zero such that the resonant
frequency of the rotating MHD flow is equal to that of the
rotating hydrodynamic flow (see (22) and (23)), and then the
dissipation of rotating MHD flow is also equal to that of the
rotating hydrodynamic flow. It should be noted that this result
is valid only at the resonant frequencies.

After investigating dissipation at particular frequencies, we
study the dissipation integral over frequency. In the rotating
hydrodynamic flow, by virtue of (38), (39), and (36) we can
readily derive the viscous dissipation integral
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The numerical integration with the accurate Gauss–Legendre
method yields the same result. In the rotating MHD flow, the
analytical derivation is not straightforward, so we perform the
numerical integration. Figure 10 shows the integrals of viscous,
Ohmic, and total dissipations over a wide range of frequency
(from −4000 to 4000). It verifies that the total dissipation is
always p 2 and independent of viscosity (Ekman number),
imposed magnetic field (Lenert number), and magnetic
diffusivity (magnetic Prandtl number). The left panel shows
that the viscous and Ohmic dissipations are independent of
Ekman number (both are p 4 at =Le 1 and =Pm 1) and the
total dissipation is exactly p 2. The middle panel shows that at
small Le the viscous dissipation integral dominates over the
Ohmic dissipation integral, whereas at large Le (>1) the two
dissipation integrals reach the same level p 4. It is not
surprising that the Ohmic dissipation integral dominates over
the viscous dissipation integral for <Pm 1 and vice versa for

>Pm 1, as shown in the right panel. The fact that the total
dissipation integral is constant can be interpreted as follows.
Consider a damped harmonic oscillator g w+ + =x x x¨ 0

2˙
wa tcos( ), where γ is the friction coefficient, w0 is the natural

frequency, and ω is the forcing frequency. We can use this toy
model to understand the tidal dissipation in the fluid system. γ
is analogous to viscosity and magnetic diffusivity, w0 is the
eigenfrequency of the inertial or magneto-inertial wave, and ω

is the tidal frequency. Using Greenʼs function we can find the
dissipation rate of this damped harmonic oscillator to be

gw w w gw= - +D a2 2 2 2
0
2 2 2[( ) ( ) ]. The integral of the dis-

sipation rate over all forcing frequencies ò w p=
-¥

¥
Dd a2 2 is

thus constant, depending only upon the forcing amplitude a but
independent of the friction coefficient γ and the natural
frequency w0. That is, the frequency-averaged dissipation is
constant, and this result may have important astrophysical
consequences.

6. APPLICATIONS TO ASTROPHYSICS

We can apply these results to the tidal dissipation in the
geophysical and astrophysical fluids. First, in the presence of
the magnetic field, the range of the resonant frequencies is
broader, i.e., w w w< <- +

0 , and out of  w- W W2 2 in the
purely hydrodynamic flow (for example, with the parameters in
this paper it changes from −1.1547 to 8.3272 and −9.4819).
Therefore, the tidal resonance is more likely to occur. Second,
the dissipation at the resonance on the small length scales is
insignificant and equal to the dissipation of the non-resonance.
So the major contribution to the tidal dissipation at the
resonance is at intermediate length scales rather than small
scales. Usually the dissipation on the small scales is stronger
than on the large scales, but at the resonant frequency the
situation is opposite, namely dissipation scales as - -E k1 2.
Third, the more rapid rotation or the smaller viscosity (the
lower E) leads to the higher dissipation at the resonance. That
the smaller viscosity leads to the higher dissipation is
counterintuitive, which is again because of the resonance.
Fourth, the dissipation at the negative resonant frequency
dominates over the other dissipations for small Le, and this
might happen in the rapidly rotating and weakly magnetized
stars. Fifth, when the phase velocity of the magneto-inertial
waves in the rapidly rotating fluid is perpendicular to the
magnetic field, the amplitudes of the waves at the resonant
frequencies will reach their maximum and hence the waves at
the resonance will be highly damped.
Furthermore, we estimate the parameters E, Le, and Pm used

in our calculations. In the interiors of stars and giant planets,
magnetic diffusivity is much larger than viscosity and Pm is
very small. Take the Sun and Jupiter, for example. In the solar
convective zone Pm is of the order of -10 6 and in Jupiterʼs
interior it is of the order of -10 4. Therefore, Ohmic dissipation
is much stronger than viscous dissipation. By inserting the

Figure 10. Rotating MHD flow. The dissipation integrals over frequency over Ekman number, Lenert number, and magnetic Prandtl number. The solid lines denote
the total dissipation, the dashed lines represent the viscous dissipation and the dashed–dotted lines represent the Ohmic dissipation.
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radius, rotation rate, and viscosity of the Sun and Jupiter into
the definition of Ekman number E, we estimate the E of the Sun
and Jupiter to both be of the order of -10 16, which is very small
(if we take l, the box size, to be 1/10 or 1/100 of the radius, E
is still very small). The small Ekman number implies the strong
dissipation at resonance (remember µ -D Ek m,

1). The Lehnert
number is not easily estimated because the magnetic field in the
interiors of the Sun and Jupiter is unknown. Although we know
the surface field strength, the field in the interiors may be much
stronger than the surface because of the dynamo action, e.g.,
the strong differential rotation shears the poloidal field to create
a strong toroidal field.

To understand the magnetic effect on tidal dissipation in
stars and giant planets, we scan the Lehnert number at a fixed
frequency. We keep = -E 10 16 and = -Pm 10 6, both of which
are as small as in the Sun or Jupiter. We choose two force
frequencies to calculate dissipations. One frequency is chosen
to be the resonant frequency of hydrodynamic flow,
w w= = - k k2 z0 . We choose this frequency in order to
compare with the purely hydrodynamic flow. The other
frequency is chosen to be w = 3.0 at which the inertial wave
cannot be excited by the tidal force such that only the magneto-
inertial wave can be excited. As before, we take the
wavenumbers to be = = =n n n 1x y z and a = 45 . The
dissipation of purely hydrodynamic flow ( =Le 0) can be
calculated to be = ´D 4.22 10k

13 at w0 and
= ´ -D 3.43 10k

16 at w = 3.0. Figure 11 shows the kinetic
and Ohmic dissipations versus Le at the given parameters,
which are close to those of the Sun and Jupiter. Le is taken to
be from -10 12 to 105, a large range which covers the field
strength on the surface and in the interior. The figure shows that
at small Le in the weak field regime (  -Le 10 8 for w0 or

 -Le 10 5 for w = 3.0) the kinetic dissipations at both
frequencies w0 and w = 3.0 are equal to the ones of purely
hydrodynamic flow, whereas the Ohmic dissipations are
negligible compared to the kinetic dissipations. However, at
large Le in the strong field regime ( Le 1) both the kinetic and
Ohmic dissipations decrease with increasing Le (the spikes for
w = 3.0 arise from resonances at »Le 0.4), and the kinetic

dissipations decay as -Le 4 and the Ohmic dissipations as -Le 2.
These two scalings can be readily obtained by (36), (37)–(39)
under the condition Le 1. Then it is more interesting to
study the intermediate range of Le. When Le is of the order of

-10 3 the Ohmic dissipations win out the kinetic dissipations at
the both frequencies. We may then have a tentative result: in
the regions of stellar and planetary interiors where the order of
Le is larger than -10 3, the magnetic effect on tidal dissipation
should be considered. In white dwarfs and neutron stars the
magnetic fields are very strong, e.g., the surface fields of white
dwarf can exceed 106 Gauss, and therefore, in these compact
objects it is very likely that the Ohmic dissipation dominates
over the kinetic dissipation. Thus, in binary compact objects
the magnetic effect on tidal dissipation should be considered.

7. DISCUSSIONS AND CONCLUSIONS

In this work we derived the linear response to the tidal
forcing in the rotating MHD flow under the local WKB
approximation, and then calculated the kinetic dissipation in
the rotating hydrodynamic flow, as well as both the kinetic and
Ohmic dissipations in the rotating MHD flow. We focused on
resonances and studied the effects of the frequency, the
wavenumber, and the other parameters, namely the Ekman
number, the Lehnert number, the magnetic Prandtl number, and
the angle α. In the rotating hydrodynamic flow there is only
one resonant frequency and the kinetic dissipation at the
resonant frequency scales as - -E k1 2. In the rotating MHD flow
there exist two resonant frequencies, one positive and the other
negative. In both the rotating hydrodynamic and MHD flows,
the resonance takes its effect on the dissipation at intermediate
length scales. In the rotating MHD flow, in the weak field
regime (in terms of <Le 1) the kinetic dissipation at the
negative resonant frequency dominates over the other three
dissipations ( > >-  +D D Dk m k ), and all four dissipations at the
resonant frequencies scale as - -E k1 2, which is the same as in
the rotating hydrodynamic flow. The Ohmic dissipation
exceeds the viscous dissipation at <Pm 1, whereas the viscous
dissipation exceeds the Ohmic dissipation at >Pm 1. The
wave damping at the resonance reaches its maximum when the
wavevector is perpendicular to the magnetic field. In addition,
we also find that the frequency-integrated total dissipation is
constant, and that Ohmic dissipation is important
for > -Le 10 3.
It should be noted that studies of the magneto-elliptic

instability due to tides suggest that a strong field increases
dissipation and reduces synchronization time (see Mizerski &
Bajer 2011). However, in our study a strong field decreases the
“diffusion,” as shown by Figure 7, namely the dissipation at
small Le never gets close to the hydrodynamic value. This
difference could arise from three possibilities. The first is the
different dissipation mechanisms. In Mizerski & Bajer (2011)
both the molecular viscosity ν and the magnetic diffusivity η
are absent, the dissipation arises from the turbulent viscosity
(i.e., turbulent Reynolds stress), and the enhancement of the
dissipation is because of the addition of turbulent Maxwell
stress. However, in our study the dissipation arises from the
molecular viscosity and the magnetic diffusivity but not the
turbulent stresses. The second is that in Mizerski & Bajer
(2011), the tidal dissipation is calculated with the elliptical
instability, whereas in our study it is directly calculated from
the flow driven by the time-dependent dynamical tide ( f ). The

Figure 11. Rotating MHD flow. The kinetic dissipation Dk (black line) and the
Ohmic dissipation Dm (red line) vs. Le. Solid lines denote
w = - = -k k2 2 3z and dashed lines denote w = 3.0. = -E 10 16,

= -Pm 10 6, and a = 45 . = = =n n n 1x y z .
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third is the elliptical effect. In Mizerski & Bajer (2011) the
elliptical streamline is assumed. However, in our study we do
not consider the elliptical instability.

One may argue that the unbounded geometry is too simple.
In a domain with boundaries, the inertial waves reflect and
internal thin layers form in which the dissipation is very strong.
However, the addition of a magnetic field revises the Poincaré
equation governing the inertial waves in a rotating fluid, such
that the waves will not focus in the internal thin shear layers,
(see Tilgner 2000). Second, we need to clarify again that this
work only begins the investigation of magnetic effects on
dynamical tides and we will carry out more work in spherical
geometry.

This work was initiated in Princeton and completed in
Shanghai. Prof. Jeremy Goodman gave me valuable sugges-
tions. The anonymous referee gave me valuable suggestions
and comments, and revised the manuscript and corrected the
grammar mistakes. I am financially supported by the National
Science Foundations Center for Magnetic Self-Organization
under grant PHY-0821899 and the startup grant WF220441903
of Shanghai Jiao Tong University.
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