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ABSTRACT

To understand the generation of the Earth’s magnetic field and those of other planets, we numerically investigate
the combined effect of precession and convection on dynamo action in a spherical shell. Convection alone,
precession alone, and the combined effect of convection and precession are studied at the low Ekman number at
which the precessing flow is already unstable. The key result is that although precession or convection alone are
not strong enough to support the dynamo action, the combined effect of precession and convection can support the
dynamo action because of the resonance of precessional and convective instabilities. This result may explain why
the geodynamo has been maintained for such a long time compared to the Martian dynamo.
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1. INTRODUCTION

The magnetic fields of astronomical bodies are generated
through the dynamo action, namely, the motion of electrically
conducting fluid shears and twists magnetic field lines to create
new field lines to offset magnetic diffusion. For the dynamo in
the Earth’s core, i.e., the geodynamo, thermal and composi-
tional convection is believed to be the major power, where the
differential rotation and helical motion combine to induce the
dynamo action. The convection dynamo has been extensively
studied since the 1970s, e.g., by Busse (1978), Hollerbach
(1996), Zhang & Schubert (2000), Roberts & Glatzmaier
(2000), Jones (2011), etc. On the other hand, Bullard &
Gellman (1954) discussed the possibility of a precession driven
geodynamo, and Malkus (1968) pointed out that the flow
instabilities driven by precession could power the geodynamo.
The most recent work shows that convection in the Earth’s core
may not be sufficiently strong for heat transfer as anticipated in
earlier studies (Olson 2013), which implies that the Earth’s
precession might be the major power for the geodynamo.
Moreover, magnetic records show that geomagnetic dipole
reversals are statistically correlated to the Earth’s orbital
eccentricity (Yamazaki & Oda 2002), which implies that the
Earth’s precession also plays an important role in the dipole
reversals. These geophysical applications motivate the study of
the precession dynamo.

The precessing flow in spheroidal geometry was studied by
Poincaré (1910) for invisid fluid and by Busse (1968) for
viscous fluid. Recently, the study of precessing flow has
attracted much attention, e.g., the asymptotic study by Zhang
et al. (2014), the numerical studies by Cébron et al. (2010) and
Hollerbach et al. (2013), and the experimental studies by Noir
et al. (2003), Lavorel & Le Bars (2010), Goto et al. (2014), Lin
et al. (2014), etc. However, not many studies have been carried
out for the precession dynamo because of the complex flow
structure, e.g., the inertial waves spawned from the critical
latitude, the thin internal shear layers, the triad resonance of
instabilities, etc. (Kerswell 1993; Tilgner 2007).

Tilgner (2005) carried out the first numerical calculation on
the precession dynamo in spherical geometry using the spectral
method. It was found that both the laminar precessing flow at
high Ekman number and the unstable precessing flow at low
Ekman number can induce the dynamo. In the former, the

dynamo is powered by the poloidal flow arising from the
Ekman layer, and in the latter it is powered by the instabilities
of the precessing flow. Later, Wu & Roberts (2009) carried out
finite difference calculations in spheroidal geometry, and Ernst-
Hullermann et al. (2013, pp. 208–243) carried out finite volume
calculations in ellipsoidal geometry.
A question then arose. What would be the combined effect

of precession and convection on the dynamo action? Wei &
Tilgner (2013) carried out numerical calculations on the
hydrodynamic interaction of precession and convection in a
spherical shell. It was found that the two driving mechanisms
for the dynamo can destabilize each other, namely, their mutual
interaction leads to a more unstable flow because of the
resonance of the two instabilities (see the details in Wei &
Tilgner 2013). Usually, the flow instabilities favor dynamo
action, and thus it seems plausible that the combined effect of
precession and convection may facilitate the onset of the
dynamo and lead to more efficient dynamo action.
In this paper, we extend the numerical calculations of the

precession dynamo in Tilgner (2005) and of the precession-
convection flow in Wei & Tilgner (2013) to the precession-
convection dynamo. We use the same numerical setup and
code as in these two previous papers, i.e., the same linear
stratification profile and the same precession angle of 60°. In
Section 2, the mathematical equations are formulated and the
numerical method is introduced. In Section 3, the numerical
results are shown and discussed. In Section 4, we provide a
summary and briefly discuss possible applications to geomag-
netism, the Martian magnetic field, magnetic fields in small
bodies, and further opportunities for study.

2. EQUATIONS

Our numerical setup is identical to that in Tilgner (2005) and
Wei & Tilgner (2013). Suppose that we have a conducting fluid
in a spherical shell with aspect ratio ri/ro. The spherical shell
spins at a rate Ωs about its symmetric axis (the z axis) and
precesses at a rate Ωp about an inclined axis with angle β to the
z axis. In the frame attached to the boundary, the unit vector of
the precession axis is expressed in the Cartesian coordinate
system (x, y, z) as

b b bW = - +x y zt tsin cos sin sin cos , 1p
ˆ ˆ ˆ ˆ ( )
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where the hat denotes the unit vector. Meanwhile, we impose a
background temperature Tb and assume that it has a linear
profile
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where To and Ti are the temperature, respectively, at ro and ri,
and d is the thickness of the spherical shell. The temperature
gradient (To−Ti)/d is negative (i.e., unstable stratification) for
convection. This linear temperature profile is maintained by a
heat source inversely proportional to the radius. In addition to
the linear profile, we can assume other profiles maintained by
different heat sources. We choose the linear profile because it is
simple in terms of numerics, namely, in the physical space the
grids near the boundaries are not required to be dense, such that
the Chebyshev collocation points we use in the radial direction
are sufficiently dense to resolve the linear profile.

We make use of the Boussinesq approximation that the
density variation is only considered in the buoyancy force and
is proportional to the temperature deviation Θ=T−Tb. Then,
the dimensionless Navier–Stokes equation in the frame
attached to the boundary reads
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where all of the curl-free terms are absorbed into the total
potential Φ. On the right-hand side of Equation (3), the second
term is the viscous force, the third term is the Coriolis force due
to global rotation, the fourth term is the Poincaré force due to
precession and it drives the precessing flow, the fifth term is the
buoyancy force due to stratification, and the last term is the
Lorentz force due to the magnetic field. The dimensionless
temperature deviation equation reads

¶Q
¶

+ Q =  Q +u
t

Ek

Pr
u . 4r

2· ( )

On the right-hand side of Equation (4), the inhomogeneous
term ur derived from the advection term u Tb· causes the
temperature deviation. The dimensionless magnetic induction
equation reads

¶
¶
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In the above dimensionless Equations (3)–(5), the normal-
ization is as follows. Length is normalized with the shell
thickness d, time with the inverse of the rotation rate W-

s
1,

velocity with W ds , temperature deviation with Ti−To, and the
magnetic field with rmW ds (where ρ is the fluid density and μ
the magnetic permeability). There are five dimensionless
parameters governing the system. The Ekman number

n= WEk ds
2( ) measures the ratio of the viscous timescale to

the spin timescale, the Poincaré number = W WPo p s measures
the ratio of the precession rate to the spin rate, the rotational
Rayleigh number a= - W

~
Ra g T T ro i o os

2( ) ( ) (where α is the
thermal expansion coefficient and go the gravitational accel-
eration at ro) measures the square of the ratio of the buoyancy
frequency to the spin rate, the Prandtl number Pr=ν/κ

measures the ratio of the viscosity to the thermal diffusivity,
and the magnetic Prandtl Pm=ν/η measures the ratio of the
viscosity to the magnetic diffusivity. It should be noted that
what we use to measure the strength of the convection is the
rotational Rayleigh number, not the conventional Rayleigh
number a nk= -Ra g T T ro i o o

3( ) . They are related through

a
nk

a
n

n
k

=
-

=
-

W
W

=~ -

Ra
g T T d g T T

r

d r

d

Ra Ek Pr
r

d
. 6

o i o o i o

o

o

o

3

s
2

s
2 4

2

2

( ) ( )

( )

The aspect ratio is given as 0.1 to minimize the effect of the
inner core, and the precession angle β is given as 60°, as in
Tilgner (2005) and Wei & Tilgner (2013), such that precession
has a noticeable effect.
The velocity boundary condition is no-slip =u 0 at the

outer boundary (precession in spherical geometry couples the
fluid motion and the boundary motion through viscosity, and
therefore the no-slip outer boundary condition is necessary to
drive the precessing flow) and stress-free at the inner boundary
to approximate a full sphere. The boundary condition for
temperature deviation is homogeneous Θ=0. The magnetic
boundary condition is insulating, namely, the magnetic field at
the boundaries matches a potential field for the exterior regions
of r>ro and r<ri. The initial values of the flow, temperature
deviation, and magnetic field are given as small values.
The equations are numerically solved in a spherical

coordinate system (r, θ, f) with a pseudo-spectral code
(Tilgner 1999) which was used in Tilgner (2005) and Wei &
Tilgner (2013). The toroidal-poloidal decomposition is used to
take into account the solenoidal property of the fluid velocity
and magnetic field. All of the functions are expanded with
spherical harmonics on the spherical surface and with the
Chebyshev polynomials in the radial direction. The semi-
implicit scheme is employed for time stepping, using an
Adams-Bashforth scheme for the nonlinear terms and a Crank-
Nicolson scheme for the diffusive terms. Resolution as high as
1283 is used and the resolutions are checked as in Tilgner
(2005) and Wei & Tilgner (2013). To identify a successful
dynamo, we integrate the MHD equations until the magnetic
energy grows to a noticeable value and maintains for a long
period without the tendency to decay.

3. RESULTS

As discussed in Tilgner (2005), both the laminar precessing
flow at high Ekman number and the unstable precessing flow at
low Ekman number can induce the dynamo action. In the
Earth’s core, the Ekman number is very low, of the order of
10−15, and the precessing flow at such a low Ekman number is
unstable. Therefore, we study the Ekman number
Ek=3×10−4 at which the precessing flow is already
unstable (Tilgner 2005; Wei & Tilgner 2013). One may argue
that this Ekman number is not low enough, e.g., 10−6 used in
some large-scale simulations for the convection dynamo. It
should be noted that the purpose of our study is to initiate the
investigation of the combined effect of precession and
convection on the dynamo, not to push the parameter toward
the real Earth or to scan the parameter space for a systematic
study. It is clear that at lower Ekman number, the precessing
flow has more complex structure and exhibits higher azimuthal
wavenumbers, which favors the dynamo action. At
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Ek=3×10−4, the precessing flow is already unstable and the
important physical ingredient that an unstable precessing flow
favors the dynamo action is already involved. Therefore, we do
not attempt to push the Ekman number to smaller values due to
the limitation of our computational facility.

We calculate step-by-step the precession dynamo, the
convection dynamo, and the precession-convection dynamo.
The Prandtl number Pr is fixed to be 1. It is known that a
higher magnetic Prandtl number Pm facilitates the onset of a
dynamo (see Figure 1 in Christensen & Aubert 2006 or Figure
8 in Jones 2011), and it is fixed at 2, which is above the critical
Pm. We then vary Po and

~
Ra to search for the dynamo.

Because the Earth’s precession is retrograde, Po is given to be
negative.

First, we study the precssion dynamo. Before calculating the
precession dynamo, we calculate the hydrodynamic precessing
flow. These numerical calculations give the fluid rotation vector
to be consistent with Busse’s solution derived from the Ekman-
layer asymptotic calculation (Busse 1978). We do not repeat to
show the hydrodynamic results in this paper, which have
already been discussed in detail in Tilgner (2005) and Wei &
Tilgner (2013) using the same numerical setup and code. Now,
we vary Po to calculate the nonlinear dynamo equations at
Ek=3×10−4, Pr=1, and Pm=2 to search the critical Po∣ ∣
for the onset of the dynamo. We increase Po∣ ∣ by a step of 0.1.
It is found that magnetic energy eventually decays at
Po=−0.2, but grows and eventually saturates at
Po=−0.3. Therefore, the critical Po∣ ∣ for the precession

dynamo is between 0.2 and 0.3. At such a low Ekman number,
the precssional instabilities develop such that the symmetry
of the laminar precessing flow about the center (r= 0)
breaks, and so the instabilities can be measured by the kinetic
energy of the anti-symmetric component of the flow

= + -u u r u r 2a [ ( ) ( )] (Tilgner 2005; Wei & Tilgner 2013).
It should be noted that the precessional instabilities contain
both anti-symmetric and symmetric components, but the
laminar precessing flow contains only the symmetric comp-
onent, and so the non-zero anti-symmetric component indicates
the precessional instabilities and the energy of the anti-
symmetric component measures the strength of the preces-
sional instabilites. Figure 1 shows the time evolution of the
precession dynamo at Po=−0.3, which is consistent with the
result in Tilgner (2005). The ratio of the anti-symmetric kinetic
energy to the total kinetic energy Ea/Ekin is not negligible and
its time average is 5.34×10−3, which indicates that the
precessing flow is unstable. The poloidal flow is important for
the α effect in dynamo action, i.e., twisting field lines.
Figure 1(a) shows the time evolution of the poloidal kinetic
energy. Its time average is listed in Table 1. As in Tilgner
(2005), we define the magnetic Reynolds number Rm with the
dimensionless mean poloidal flow =u E V2pol pol (where
Epol is the poloidal energy of flow and V is the fluid volume) to
be =Rm u Pm Ekpol . Rm is 707 at =Po 0.3∣ ∣ (Table 1) for a
successful dynamo, but 694 at =Po 0.2∣ ∣ for a failed dynamo.
The dominant azimuthal mode of the precessing flow is m=1,

Figure 1. Precession dynamo at Po=−0.3. Here, we show the time evolution of the poloidal kinetic energy (a) and magnetic energy (b).

Table 1
The Successful and Failed Dynamos at Different Po and

~
Ra

(Po,
~
Ra) Ra Nu Epol Rm m EB

(−0.2, 0) 0 n/a 3.11×10−2 694 1 failed dynamo
(−0.3, 0) 0 n/a 3.23×10−2 707 1 9.44×10−4

(0, 0.5) 6.17×106 1.78 1.15×10−3 133 3 failed dynamo
(0, 0.6) 7.41×106 1.83 1.33×10−3 144 3 2.11×10−7

(−0.2, 0.5) 6.17×106 2.20 2.96×10−2 677 1 1.78×10−5

Note. For the successful dynamos, the conventional Rayleigh number, the Nusselt number, the Poloidal kinetic energy, the dominant azimuthal mode of the flow, and
the magnetic energy are shown. The values are taken for the time average in the statistically steady stage.
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i.e., the spin-over mode (Greenspan 1968; Tilgner 2007).
Figure 1(b) shows the time evolution of the magnetic energy. A
comparison of Figures 1(a) and (b) indicates that the flow
fluctuates on a small scale, whereas the magnetic field varies on
a large timescale. The time average of the magnetic energy EB

is also listed in Table 1.
Next, we study the convection dynamo. Similar to the

precession dynamo, we vary
~
Ra to search for the onset of the

convection dynamo. It is found that the critical
~
Ra is between

0.5 and 0.6, i.e., the magnetic energy decays at =
~
Ra 0.5 but

grows and saturates at =
~
Ra 0.6. Figure 2 shows the time

evolution of the convection dynamo at =
~
Ra 0.6. We should

emphasize that although the difference of
~
Ra is only 0.1, the

conventional Ra translated through Equation (6) is more than
one million (see Table 1)! In a convective flow, the Nusselt
number Nu is used to measure the ratio of the total heat flux to
the thermal conduction. The time average of Nu at the outer
boundary is 1.83 (Table 1), which indicates a strong convective
motion (Nu at the inner boundary can be deduced from its value
at the outer boundary through Equation (4.2) in Wei & Tilgner
2013). Figure 2(a) shows the time evolution of the poloidal
kinetic energy. The poloidal kinetic energy of the convection
dynamo is much lower than that of the precession dynamo, and
thus Rm=144 for the convection dynamo is lower than
Rm=707 for the precession dynamo (Table 1). As we
discussed in the last paragraph, at Rm=694, the precessing
flow cannot maintain a dynamo, but the convective flow can at
Rm=144. In this sense, convection is more efficient for the
onset of the dynamo than precession. We must point out that
this conclusion is valid only at this Ekman number. At a
smaller Ekman number, the precessing flow is more complex,
which favors the onset of the dynamo, and this conclusion may
not hold any longer (we leave the large-scale simulations at
smaller Ekman numbers for other researchers who will be
interested in the result of this work). The comparison between
Figures 1(a) and 2(a) suggests that not only the mean poloidal
kinetic energy but also the fluctuation amplitude of the
precessing flow are much higher than those of the convective
flow. This implies that the precessional instabilities are more

vigorous than the convective instabilities in the two successful
dynamos. The dominant azimuthal mode in the convective flow
is m=3 (Table 1), indicating a shorter length scale than the
dominant spin-over mode m=1 in the precessing flow.
Figure 2(b) shows the time evolution of the magnetic energy.
Compared to Figure 1(b), the magnetic energy of the
convection dynamo becomes noticeable at the time ≈5000,
which is much later than the time ≈400 of the precession
dynamo. It is not surprising that the magnetic energy of the
convection dynamo is also much lower than that of the
precession dynamo (Table 1) because of the lower Rm of the
former.
After studying the dynamos driven by precession alone and

by convection alone, we study the combined effect of
precession and convection. In the above two dynamos, the
dynamo driven by precession alone cannot be maintained at
Po=−0.2 and the dynamo driven by convection alone cannot
be maintained at =

~
Ra 0.5. We test whether the preceission-

convection dynamo can be maintained at Po=−0.2 and
=

~
Ra 0.5. This dynamo works! It indicates that the combined
effect of precession and convection can indeed facilitate the
onset of the dynamo. As we discussed, the conventional Ra
differs by more than one million, which indicates that
precession greatly helps the onset of the convection dynamo.
Moreover, it is interesting that the Rm=677 of the precession-
convection dynamo is lower than the Rm=694 of the failed
precession dynamo, as shown in Table 1. This suggests that the
combination of precession and convection has some non-trivial
effect and triggers the dynamo action at a lower Rm of the pure
precession dynamo. This non-trivial effect probably arises from
the resonance of precessional instability and convective
instability. Figure 3 shows the time evolution of this
precession-convection dynamo and its time-averaged values
are listed in Table 1. Although the =

~
Ra 0.5 of the precession-

convection dynamo is lower than the =
~
Ra 0.6 of the

convection dynamo, the Nu of the former is higher (Table 1).
This is because the poloidal flow driven by precession
contributes more to heat transfer than convection, i.e.,

= ´ -E 3.11 10pol
2 of the precessing flow at Po=−0.2 is

already much higher than Epol=1.33×10−3 of the

Figure 2. Convection dynamo at =
~
Ra 0.6. Here, we show the time evolution of the poloidal kinetic energy (a) and the magnetic energy (b).
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convective flow at =
~
Ra 0.6. The dominant azimuthal mode is

m=1 (Table 1), which indicates that the precession-convec-
tion flow is more precessing than convective. Epol and Rm of
the precession-convection dynamo are a little lower than those
of the precession dynamo but much higher than those of the
convection dynamo (Table 1), which again suggests that the
precession-convection flow is more precessing. The magnetic
energy becomes noticeable at time ≈700 (Figure 3(b), which is
a little later than the time ≈400 of the precession dynamo but
much earlier than the time ≈5000 of the convection dynamo.

To end this section, we discuss the flow patterns in the
different dynamos. Figure 4 shows the contours of the radial
velocity in the meridional plane in the precession, convection,
and precession-convection dynamos. The flow of the convec-
tion dynamo exhibits the columnar structure at such low Ek.
However, the flow of the precession dynamo seems chaotic
because, as discussed, the precessional instabilities are more
vigorous than the convective instabilities. The flow of the

precession-convection dynamo is similar to that of the
precession dynamo and has a more complex structure than
the flow of the convection dynamo. This also explains why the
combined effect favors the dynamo action. It is because the
precession-convection flow tends to be chaotic and have the
complex structure which favors the dynamo action.

4. SUMMARY

Through our numerical calculations, we know that the
combined effect of precession and convection favors the
dynamo action. Although precession alone or convection alone
is not strong to support the dynamo action, the combined
precession-convection dynamo works. The reason for this is
that the combined effect tends to make the flow more unstable
and a more complex flow structure emerges which favors the
dynamo action. Thus, we may have a tentative point. After a
long history, the heat flux in the Earth’s fluid core becomes
weaker and weaker and at some time the convection is not

Figure 3. Precession-convection dynamo at Po=−0.2 and =
~
Ra 0.5. Here, we show the time evolution of the poloidal kinetic energy (a) and the magnetic

energy (b).

Figure 4. Contours of the radial velocity in the meridional plane at f=180°. (a) The precession dynamo at Po=−0.3. (b) The convection dynamo at =
~
Ra 0.6. (c)

The precession-convection dynamo at (Po=−0.2, =
~
Ra 0.5). Solid lines denote positive and dotted lines negative. These are all snapshots when the dynamos

saturate.
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powerful to support the geodynamo (e.g., Olson 2013), but the
geodynamo can still be maintained because the precession
provides the energy. This could have already occurred in
Earth’s early history when the fluid core was too small to
support the geodynamo. This could be occurring in the Earth’s
core. This could occur in the future because the heat flux in the
Earth’s fluid core diminishes and will not support the
geodynamo. In comparison, the Martian dynamo terminated
because the precession of Mars is not as strong as that of the
Earth. When the convection in the Martian fluid core stopped,
the Martian dynamo could not be maintained by the weak
Martian precession. It should be clarified that this is our
tentative conjecture and requires additional observational
evidence to support or refute.

In addition to the Earth’s magnetic field, the result of this
work can be extended to the magnetic fields of small bodies.
Wei et al. (2014) studied the dynamo action in small bodies
driven by collisions. Precession can be considered as
continuous collisions when the collision frequency is close to
infinitesimal. In the presence of both collision and convection,
it is plausible that the dynamo due to collisions tends to be
driven more easily than by collision or convection alone.

There is further work that we leave for interested researchers.
The Ekman number in this work is not very small, although it is
sufficiently small for the onset of precessional instabilities. Our
work simply initiates the study of the combined effect of
precession and convection. As we know, the precessing flow
structure at lower Ekman numbers will be complex and
instabilities will prefer higher azimuthal modes. Therefore, the
low Ekman regime must be investigated. Another area of
further study is the geometry. In this work, we study a spherical
dynamo. The Earth’s core is not spherical but spheroidal. The
pressure torque in the spheroidal geometry can enhance the
coupling between fluid and boundary motions (Tilgner 2007),
and, moreover, elliptical instability in spheroidal geometry, an
instability of a two-dimensional flow with elliptical streamlines
leading to a three-dimensional flow (Kerswell 2002;
Tilgner 2007; Zhang et al. 2014), can occur. Both the pressure
torque and the elliptical instability can facilitate the dynamo

action. Therefore, the spheroidal geometry also must be
investigated.

This work was initiated in Princeton and completed in
Shanghai. Prof. Andreas Tilgner provided me his code. Prof.
Andreas Tilgner and Prof. Keke Zhang provided valuable
suggestions about this work. This work was supported by the
National Science Foundations Center for Magnetic Self-
Organization under grant PHY-0821899 and the startup grant
WF220441903 of Shanghai Jiao Tong University.
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