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Abstract We investigate numerically the decay of isotropic, rotating, magnetohydrodynamic (MHD) and
rotating MHD flows in a periodic box. The Reynolds number Re defined by the box size and the initial
velocity is 100, at which the flows are in a weakly nonlinear regime, i.e. not laminar but far away from the
fully turbulent state. The decay of isotropic flow has two stages, the first stage for the development of small
scales and the second stage for the viscous dissipation. In the rapidly rotating flow, fast rotation induces the
inertial wave and causes the large-scale structure to inhibit the development of the first stage and retard the
flow decay. In the MHD flow, the imposed field also causes the large-scale structure but facilitates the flow
decay in the first stage because of the energy conversion from flow to magnetic field. The magnetic Reynolds
number Rm is important for the dynamics of the MHD flow; namely, a high Rm induces the Alfvén wave but
a low Rm can not. In the rotating MHD flow, slower rotation tends to convert more kinetic energy to magnetic
energy. The orientation between the rotational and magnetic axes is important for the dynamics of the rotating
MHD flow; namely, the energy conversion is more efficient and a stronger wave is induced when the two axes
are not parallel than when they are parallel.

1 Introduction

Rotation and magnetic field play important roles in the engineering, geophysical and astrophysical fluid
motions. Rotation causes the Coriolis force in the rotating frame, and the magnetic field causes the Lorentz
force. These body forces act as restoring forces to induce the internal waves that transport energy and angular
momentum in the fluid interior. Rotation induces the inertial wave [5], the magnetic field induces the Alfvén
wave [1], and the combined effect of rotation and magnetic field induces the magneto-Coriolis wave [9]. The
propagation of these waves leads to the anisotropy of flows, and the large-scale structure forms along the
rotational axis in the rapidly rotating flow or along the magnetic field lines in the MHD flow. The decay of
the rotating turbulence and the MHD turbulence has been studied, for example, in the experimental work of
[12,13] etc., the analytical work of [3,4,8] etc., and the numerical work of [7,10,14–16] etc. It has already
been pointed out that the decay rate depends on the initial flow in the isotropic turbulence [6] as well as in
the anisotropic turbulence [3]. Moreover, in the MHD turbulence the decay rate also depends on the ratio of
various timescales, namely the lack of universality as suggested by [7,8] etc. We will discuss this in Sect. 4.
However, the rotating MHD turbulence is not extensively studied, especially how the different orientations
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of the rotational and magnetic axes will influence the decay of the rotating MHD turbulence. On the other
hand, the weakly nonlinear regime is not well studied. Through our moderate-scale numerical calculations in
the weakly nonlinear regime, we will answer the question whether the isotropic and anisotropic flows in the
weakly nonlinear regime exhibit a behaviour similar to the turbulent flows or if they are quite different from
the turbulence. In addition, we will study the influence of the orientation between rotation and magnetic field
on the rotating MHD flow in the weakly nonlinear regime, which is of help to understanding the rotating MHD
turbulence.

In this paper we will numerically study the decay of unforced flows in the presence of rotation or magnetic
field or both. The geometry is a periodic box, i.e. unbounded flows. The Reynolds number Re is defined by the
box size and the initial velocity. It should be noted that our Reynolds number is different from the conventional
Reynolds number Rλ defined with the turbulent fluctuating velocity and the Taylor microscale λwhich is often
used in the study of turbulence. We choose Re = 100 in almost all parts of this paper, except that in Sect. 2
we will calculate Re = 200 for comparison with Re = 100. At such the low Re = 100 (note: not Rλ but Re
defined with the large scale of box size and initial velocity), the flows are in the weakly nonlinear regime, i.e.
they are not laminar but far away from the fully turbulent state. In the next sections, we will study step-by-step
the isotropic flow, the rotating flow, the MHD flow and the rotating MHD flow.

2 Isotropic flow

Before studying the anisotropic flow in the presence of rotation or magnetic field, we begin with isotropic
flow.We study in the Cartesian coordinate system (x1, x2, x3). The computational geometry is a cube with size
2πl and subject to the periodic boundary conditions in the x1, x2 and x3 directions. This periodic box can be
considered as a small region taken out of the flow interior. We give an initial velocity u0 and then numerically
calculate the governing equation of fluid motion for the decay problem. The dimensionless Navier–Stokes
equation governing incompressible fluid motion reads

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u, (1)

where length is normalised with l, velocity with the volume-averaged initial velocity ū0 =
√∫

u20dV/V , time

with l/ū0 and pressure with ρū20, where ρ is the fluid density. The Reynolds number is defined as

Re = ū0l

ν
, (2)

where ν is the viscosity.
To satisfy the incompressible condition ∇ · u0, the initial velocity is simply given to be

u01 = sin(k0x2) sin(k0x3), u02 = sin(k0x3) sin(k0x1), u03 = sin(k0x1) sin(k0x2), (3)

where k0 is the initial wave number and measures the length scale of initial flow. It should be noted that the
dynamics of decaying turbulence depends on the initial condition as pointed out in [6], namely the linear
momentum conservation or the angular momentum conservation of the initial flow. However, we are not
concerned with this subtle point in this short paper. On the other hand, our initial flow for the study in the
weakly nonlinear regime is on the large scale, but in the study of fully nonlinear turbulence the initial flow is
on the small scale, say, k0 up to 80 in [6].

We output the volume-averaged kinetic energy and viscous dissipation. With the periodic boundary con-
dition, viscous dissipation is equal to enstrophy multiplied by viscosity. We normalise kinetic energy with u20
and viscous dissipation with u30/ l, and so their dimensionless expressions are, respectively,

1

V

∫
1

2
|u|2dV and

1

Re

1

V

∫
|∇ × u|2dV . (4)

The numerical method is the standard pseudo-spectral algorithm. Taking the divergence of the Navier–
Stokes equation leads to Poisson’s equation of pressure

∇2 p = ∇ · f , (5)
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Fig. 1 Isotropic flow. The time evolution of volume-averaged kinetic energy and viscous dissipation.Black lines denote Re = 100
and red lines Re = 200. Solid lines denote k0 = 1 and dashed lines k0 = 2 (colour figure online)

where f = −u ·∇u is the inertial force. In the next sections f involves the other body forces, i.e. the Coriolis
force in the rotating flow and the Lorentz force in the MHD flow. Because of the periodic boundary condition,
we assume that velocity and pressure are expressed as

u = û(t)eik·x and p = p̂(t)eik·x, (6)

where a hat denotes the spectral space and k is the wave vector. Solving the pressure equation in spectral space
and substituting into the Navier–Stokes equation, we derive

(
d

dt
+ k2

Re

)
û = − k · f̂

k2
k + f̂ , (7)

where the viscous term is treated implicitly. The nonlinear term f is calculated in the physical space, and
f̂ in the spectral space is calculated by fast Fourier transform. Time is stepped forward with the prediction-
correction method. The second-order Runge–Kutta method is used for time stepping. The resolution as high
as 1283 and the time step as small as 10−2 are used. The fast Fourier transform is used, and the dealiasing is
satisfied in the discrete Fourier transform.

We calculate the four isotropic flows with the combination of Re = (100, 200) and k0 = (1, 2). Figure 1
shows the time evolution of the volume-averaged kinetic energy and viscous dissipation. Time is integrated
until the order of viscous timescale tν = Re = O(102). The left panel indicates that kinetic energy decays
for two stages. In the first stage flow develops to small scales through the nonlinear coupling, and then in the
second stage kinetic energy decays through viscosity. The right panel verifies these two stages. In the first stage
enstrophy increases to its peak because of formation of small scales, and then in the second stage enstrophy
decays through viscosity. The flows with higher k0 have an earlier first stage because small scales develop
earlier with higher k0. These two stages in the weakly nonlinear flow are similar to the cascade and dissipation
stages in the fully turbulent flow [2,6]. It is not surprising that in both the first and the second stages higher Re
corresponds to slower decay because of smaller viscosity and higher k0 corresponds to faster decay because
of smaller scales. We will see in the next sections that the energy cascade in the anisotropic flows with fast
rotation or a strong magnetic field will not have the two distinct stages as in the isotropic flow because of the
two-dimensionalisation.

Figure 2 shows the spectrum of kinetic energy at the snapshot when enstrophy reaches its peak value (for
isotropic flow the spectra in all the three directions are identical). It indicates that higher Re or k0 correspond
to a wider spectrum, because higher Re leads to stronger nonlinearity and higher k0 leads to coupling with
wider gap. The flow at Re = 100 and with k0 = 1 shows a visible energy spectrum, which suggests that the
flow is in the weakly nonlinear regime.

After this simple investigation on Re and k0 for isotropic flow, we will use these two parameters, Re = 100
and k0 = 1, to calculate the weakly nonlinear flows in the next sections for the studies of anisotropic flows.

3 Rotating flow

In this section we study the decay of the rotating flow. Suppose that the cube rotates about the x3 axis at a
constant angular velocity Ω = Ω x̂3, hat denoting a unit vector. In the frame rotating at Ω the dimensionless
Navier–Stokes equation reads
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Fig. 2 Isotropic flow. The spectrum of kinetic energy at the snapshot when enstrophy reaches its peak value. Black symbols denote
Re = 100 and red symbols Re = 200. Circle symbols denote k0 = 1 and square symbols k0 = 2. The spectrum is truncated at
k = 20 for better view (colour figure online)
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Fig. 3 Rotating flow. The time evolution of volume-averaged kinetic energy and viscous dissipation. Black lines denote isotropic
flow. Red, blue, green and magenta lines denote, respectively, Ro = 1.0, 0.5, 0.2 and 0.1 (colour figure online)

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + 1

Ro
2u × x̂3, (8)

where the curl-free centrifugal force is absorbed into the pressure gradient. The Rossby number

Ro = ū0
Ωl

(9)

measures the ratio of the inertial force to theCoriolis force. In the rapidly rotatingflow Ro is lower than unity and
the Coriolis force wins, whereas in the slowly rotating flow Ro is higher than unity and the inertial force wins.

We calculate the rotating flows with Ro decreasing from 1 to 0.1, for which the Coriolis force wins and
rotation becomes faster and faster. Figure 3 shows the time evolution of volume-averaged kinetic energy and
viscous dissipation. The left panel indicates that the rotating flows decay much more slowly than the isotropic
flow, and faster rotation at lower Ro corresponds to slower decay in the first stage, but the decay rates of the
rotating flows at different Ro’s do not differ too much in the second stage. This suggests that rotation takes
its effect on flow decay mainly in the first stage, while viscosity takes its effect in the second stage. The right
panel indicates that the large-scale structure forms at low Ro. Enstrophy at Ro = 1.0 and 0.5 initially increases
to the peak and then decays, which is similar to isotropic flow. Ro = 0.5 corresponds to a lower peak than
Ro = 1.0 because flow at lower Ro has larger scale. At Ro = 0.2 and 0.1 enstrophy does not have the initial
increase, because flows at sufficiently low Ro do not develop to small scales. Therefore, fast rotation inhibits
the first stage for development of small scales.

Figure 4 shows the k1 and k3 spectra of kinetic energy at time = 100 for Ro = 1.0 (the slowest rotation)
and 0.1 (the fastest rotation). The k2 spectrum is the same as the k1 spectrum. At the slow rotation, the k1
and k3 spectra do not differ too much and both concentrate on the first two modes; namely, the flow is almost
isotropic. With the fast rotation, the k3 spectrum in the rotational direction concentrates on the k3 = 1 mode
but the k1 spectrum on the first two modes; namely, the flow is anisotropic. Moreover, the difference between
the two energies contained in the k1 and the k3 modes for the same wave number (the difference between
circle and square symbols for the same wave number) is larger with the faster rotation than the slower rotation.
Therefore, the faster rotation leads to more anisotropy of the flow. Figure 5 shows the contours of the three
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Fig. 4 Rotating flow. The spectrum of kinetic energy at time = 100. Black symbols denote Ro = 1.0 and red symbols Ro = 0.1.
Circle symbols denote k1 the spectrum and square symbols the k3 spectrum. The spectrum is truncated at k = 5 for better view
(colour figure online)

Fig. 5 Rotating flow. The contours of the three components of velocity in the x1 − x3 plane. From left to right the three panels
are u1, u2 and u3. Ro = 0.1

components of velocity in the x1 − x3 plane. u1 and u2 have similar structure, whereas u3 has quite different
structure. It can be interpreted by the equation of motion. The Coriolis force (1/Ro)2u× x̂3 has no component
in the x3 direction such that the equation of u3 has no Coriolis term. Therefore, the energy contained in the
three components is very different.

Interestingly, in the rotating flow there exist oscillations of kinetic energy in the three directions. Figure 6
shows the time evolution of volume-averaged total kinetic energy and kinetic energy in the x1 direction (i.e.
1/V

∫
u21/2dV ) and in the x3 direction (i.e. 1/V

∫
u23/2dV ). Kinetic energy in the x2 direction is the same as in

the x1 direction. The oscillation period is 0.45 for Ro = 0.2 shown in the left panel and 0.22 for Ro = 0.1 shown
in the right panel. The frequency of the inertial wave is ω = 2Ω cos θ where θ is the angle between the wave
vector and the rotational axis. With our normalisation, the period of the inertial wave is πRo/ cos θ ; namely,
it is proportional to Ro. The fact that the two periods in the figure are proportional to Ro suggests that these
oscillations arise from the inertial wave. Furthermore, we can calculate the angle θ . The period of the kinetic
energy should be half of the period of the inertial wave, e.g. u21 ∝ e2iωt , and the substitution of numerical values
gives θ = 45◦. In addition, comparison between the left and right panels indicates that faster rotation causes
more difference of kinetic energy between the two directions. Again, faster rotation leads to more anisotropy.

4 MHD flow

In this section we study the decay of MHD flow. It is well known that the propagation of the Alfvén wave
along magnetic field lines will lead to anisotropy, e.g. [11] numerically studied the strong anisotropy in forced
MHD turbulence. We assume that a uniformmagnetic field is imposed in the x3 direction. The assumption that
the imposed field is uniform is valid for the situation that the length scale of variation of imposed field is much
larger than that of flow and induced field, i.e. the local WKB approximation. We decompose the total magnetic
field into the imposed field B0 and the induced field b. The dimensionless Navier–Stokes equation then reads

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + V 2

A(∇ × b) × (x̂3 + b), (10)
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Fig. 6 Rotating flow. The time evolution of volume-averaged kinetic energy to show inertial wave. Black line denotes the total
kinetic energy, red line the kinetic energy in the x1 direction and blue line the kinetic energy in the x3 direction. Left panel is for
Ro = 0.2, and the oscillation period is 0.45. Right panel is for Ro = 0.1, and the oscillation period is 0.22. Time is truncated at
t = 30 for better view (colour figure online)

where the magnetic field is normalised with B0. The dimensionless Alfvén speed

VA = B0√
ρμū0

(11)

measures the strength of imposed field relative to the initial flow. The magnetic induction equation reads

∂b
∂t

= ∇ × (
u × (x̂3 + b)

) + 1

Rm
∇2b. (12)

The magnetic Reynolds number

Rm = ū0l

η
(13)

measures the strength of induction effect against magnetic diffusion. There are two additional parameters in
MHD flow, VA and Rm. The imposed field is measured by VA and the induced field by Rm.

In addition to VA and Rm, there are some other dimensionless parameters in the MHD flow and they are
the ratios between different timescales. The damping time of Alfvén wave td = η/ṼA

2
where ṼA = B0/

√
ρμ

is the dimensional Alfvén speed is called the magnetic damping time, and it should be noted that td is different
from the magnetic diffusion time tη = l2/η. Firstly, we define the interaction parameter by the ratio of l/ū0 to
td :

N = l/ū0
td

= l B2
0

ρμηū0
. (14)

The interaction parameter is often used in the analysis of low Rm MHDflow [1]. Then we define the Lundquist
number as the ratio of the magnetic diffusion time tη to the Alfvénic time l/ṼA:

S = l2/η

l/VA
= l ṼA

η
= l B0√

ρμη
. (15)

The Lundquist number is often used in the analysis of MHD turbulence [8]. Rm, N and S are related through

S = (RmN )1/2. (16)

It is well known that the decay of MHD turbulence has the lack of universality; namely, the decay rate depends
on the strength of imposed field which can be measured by VA, N or S. For example, in [8] the decay rate
depends on ζ = B0 · k/(√ρμηk2) where k is the wave vector of Fourier components of velocity.

Besides the kinetic energy and viscous dissipation in the hydrodynamic flow, in the MHD flow we need to
output the magnetic energy and Ohmic dissipation of induced field. The former is normalised with ū20 and the
latter with ū30/ l, and so their dimensionless expressions are, respectively,

V 2
A
1

V

∫
1

2
|b|2dV and

V 2
A

Rm

1

V

∫
|∇ × b|2dV . (17)
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Fig. 7 MHD flow. The time evolution of volume-averaged kinetic energy, viscous dissipation and magnetic energy and Ohmic
dissipation of induced field. Rm = 0.1. Black lines denote isotropic flow. Red, blue, green andmagenta lines denote, respectively,
VA = 0.5, 1, 2 and 5. Time is truncated at t = 15 for better view (colour figure online)

Firstly, we keep Rm = 0.1 for a weak induced field and vary VA from 0.5 to 5 to study the effect of the
imposed field. Figure 7 shows the time evolution of volume-averaged kinetic energy, viscous dissipation and
magnetic energy and Ohmic dissipation of the induced field. The upper-left panel indicates that in the first
stage the MHD flows decay faster than the isotropic flow and a stronger imposed field leads to faster decay.
The upper-right panel indicates that in the first stage a stronger imposed field leads to a larger-scale structure,
and particularly, with the strongest imposed field, the enstrophy does not increase but decreases. This seems
opposite to the situation of the rotating flow, in which a larger-scale structure with faster rotation leads to
slower decay. To interpret this, we need to refer to the energy equation of MHD flow:

− d

dt

(
kinetic energy + magnetic energy of imposed field

(
equal to V 2

A

) + magnetic energy of induced field
)

= viscous dissipation + Ohmic dissipation of induced field. (18)

This equation suggests that the kinetic and magnetic energies can be converted to each other due to the
work done by the Lorentz force. Then the two bottom panels give the reason for this discrepancy between
rotating and MHD flows. This is because kinetic energy is converted to magnetic energy which is damped
through Ohmic dissipation. Comparison between the upper-right and bottom-right panels indicates that Ohmic
dissipation wins out viscous dissipation with the strength of the imposed field increasing.

Next we keep VA = 1 and vary Rm from 0.1 to 100 to study the effect of the induced field. Figure 8 shows
the time evolution of volume-averaged kinetic energy and magnetic energy of the induced field. The left panel
indicates that the kinetic energy at the lowest Rm = 0.1 and the highest Rm = 100 decays faster than at the
other two intermediate Rm’s, and this is not straightforward to understand. The right panel indicates that the
highest Rm corresponds to the strongest induced field, and this is not surprising.

Similar to the inertial wave in the rotating flow, the Alfvén wave exists in MHD flow. At the lowest
Rm = 0.1, the Alfvén wave cannot be found because the induction effect is too weak. At the higher Rms, the
Alfvén wave is induced. Figure 9 shows the Alfven wave at the highest Rm = 100. The period of oscillations
at VA = 0.5 is nearly twice that at VA = 1, which is consistent with the fact that the frequency of the Alfvén
wave is proportional to the strength of the imposed field. The reason that it is not exactly twice is due to the
wave number k3. The dimensionless frequency of the Alfvén wave is Vak3, which depends not only on VA
but also on the wave number k3 (for comparison, the frequency of the inertial wave does not depend on the
wave number but the orientation of the wave vector), and different VA leads to different k3 because of different
anisotropy.
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Fig. 8 MHD flow. The time evolution of volume-averaged kinetic energy and magnetic energy of induced field. VA = 1. Black,
red, blue and green lines denote, respectively, Rm = 0.1, 1, 10 and 100 (colour figure online)
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Fig. 9 MHDflow. The time evolution of volume-averaged kinetic energy to show the Alfvén wave. Rm = 100. Black line denotes
the total kinetic energy, red line the kinetic energy in the x1 direction and blue line the kinetic energy in the x3 direction. Left
panel is for VA = 0.5, and the oscillation period is 7.12. Right panel is for VA = 1, and the oscillation period is 3.26. Time is
truncated at t = 20 for better view (colour figure online)

5 Rotating MHD flow

In this section we study the decay of rotating MHD flow. We impose a magnetic field which is static in the
rotating frame of reference; namely, the imposed field is co-rotatingwith themeanflow.This set-up is often used
in the study of planetary and stellar interiors, e.g. the dynamo action. In this case the angle between rotational
and magnetic axes should be considered. Suppose that rotation is along the x3 axis and the imposed field is
in the x1 − x3 plane. Denote the angle between rotation and imposed field by α, and then, the dimensionless
imposed field is expressed as

B0 = (sin α, 0, cosα). (19)

The dimensionless Navier–Stokes and induction equations are, respectively,

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u + 1

Ro
2u × x̂3 + V 2

A(∇ × b) × (B0 + b), (20)

∂b
∂t

= ∇ × (u × (B0 + b)) + 1

Rm
∇2b. (21)

One may question the validity of the magnetic induction equation in the rotating frame of reference. It should
be noted that the displacement current is neglected in the MHD approximation because the rotational speed
of the fluid is much lower than the speed of light, such that the magnetic induction equation still holds in the
rotating frame.

We introduce the Elsasser number measuring the ratio of the Lorentz force to the Coriolis force,

Λ = B2
0

ρμηΩ
. (22)

The Elsasser number plays an important role in the dynamo action. In themagnetostrophic balance, the pressure
gradient, the Coriolis force and the Lorentz force are balanced. In this situation the Elsasser number is of the
order of unity. It might happen in the fluid core of the Earth where the toroidal field created by the differential
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Fig. 10 Rotating MHD flow. The time evolution of volume-averaged kinetic energy and magnetic energy of induced field.
Rm = 100 and α = 0◦. Black, red, blue and green lines denote the pair of (Ro, VA) to be, respectively, (0.2, 0.5), (0.1, 0.5),
(0.2, 1.0) and (0.1, 1.0). Time is truncated at t = 50 for better view (colour figure online)
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Fig. 11 Rotating MHD flow. The time evolution of volume-averaged kinetic energy and magnetic energy of induced field.
Ro = 0.2, VA = 1 and Rm = 100. Black, red, blue, green and magenta lines denote, respectively, α = 0◦, 30◦, 45◦, 60◦ and
90◦. Time is truncated at t = 20 for better view (colour figure online)

rotation (the so-called ω effect) is so strong that the magnetostrophic balance is reached. The Elsasser number
is related to the Rossby number, the magnetic Reynolds number and the dimensionless Alvfén speed through
the expression

Λ = RoRmV 2
A. (23)

Through the study in Sect. 4 we know that low Rm and high Rm regimes are quite different for dynamics;
namely, the Alfvén wave can be induced at high Rm but is absent at low Rm. In geophysical and astrophysical
flows, Rm is high, e.g. in the Earth’s fluid core Rm is of the order of 100. Therefore, we keep Rm = 100 to
study the high Rm regime. α is kept to be 0◦. We calculate the four rotating MHD flows with the combination
of Ro = (0.2, 0.1) and VA = (0.5, 1.0) for comparison between slow and fast rotation as well as weak and
strong imposed field. Figure 10 shows the time evolution of volume-averaged kinetic energy and magnetic
energy of induced field. In the left panel, the two flows at Ro = 0.1 (red and green lines, they are almost
overlapped) decay more slowly than the two flows at Ro = 0.2 (black and blue lines), because fast rotation
retards the flow decay. The fact that the flows are grouped by Ro other than VA indicates that rotation wins
out over the imposed field in the parameter regime investigated. At Ro = 0.2 of slow rotation, the flow with
stronger imposed field (blue line) decays faster than with weaker imposed field (black line) because of energy
conversion studied in Sect. 4. In the right panel, it is not surprising that the two flows with stronger imposed
field (blue and green lines) have higher magnetic energy of induced field than the two flows with weaker
imposed field (black and red lines). However, it is interesting that at each VA the flow at Ro = 0.2 has higher
magnetic energy of induced field than at Ro = 0.1 (black vs red, blue vs green). Again, this is because of
energy conversion. As indicated by the left panel, the two flows at Ro = 0.1 have higher kinetic energy than at
Ro = 0.2. Therefore, slower rotation in rotating MHD flow tends to convert more kinetic energy to magnetic
energy.

To end this section we study the effect of the angle α on rotating MHD flow. We keep Ro = 0.2, VA = 1
and Rm = 100 and vary α from 0◦ to 90◦. Figure 11 shows the time evolution of volume-averaged kinetic
energy and magnetic energy of the induced field. Both left and right panels reveal that a noticeable difference
with respect to amplitude and frequency of oscillations exists between α = 0◦ and α �= 0◦, but this difference
among the nonzero angles is not very noticeable (the phase difference always exists for different angles). More
kinetic energy at α �= 0◦ is converted to magnetic energy than at α = 0◦. Heavier oscillations at α �= 0◦ than
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Table 1 The parameters used in the numerical calculations for different types of flows

Isotropic Rotating MHD

Re k0 Re Ro k0 Re VA Rm k0
100, 200 1, 2 100 1.0, 0.5, 0.2, 0.1 1 100 0.5, 1, 2, 5 0.1, 1, 10, 100 1

Rotating MHD

Re (Ro, VA) Rm α k0
100 (0.2, 0.5), (0.1, 0.5), (0.2, 1.0), (0.1, 1.0) 100 0◦, 30◦, 45◦, 60◦, 90◦ 1

at α = 0◦ indicate that a stronger wave is induced at α �= 0◦. Therefore, a field component perpendicular
to the rotation causes more efficient energy conversion and induces a stronger wave. This may be tentatively
interpreted with the electromotive force (e.m.f.) on its first order, u×B0. In the presence of rotation, flow in the
rotational direction wins over the other two directions, as suggested by Fig. 6, such that the major contribution
to the e.m.f. is u3B0 sin α x̂2. The e.m.f. measures the interaction of flow and field. With α increasing, this
interaction increases such that more energy conversion occurs and a stronger wave is induced.

6 Discussion

In this paper, we study the decay of isotropic and anisotropic flows in the weakly nonlinear regime. The
parameters used in the numerical calculations are listed in Table 1. The decay of isotropic flow has two stages,
the first stage for development of small scales and the second stage for viscous dissipation. Rotation induces
an inertial wave and causes the formation of a large-scale structure and retards the flow decay. It takes effect in
the first stage. An imposed field also causes the large-scale structure, but facilitates the flow decay in the first
stage because of energy conversion from flow to magnetic field. The high and low Rm regimes have different
dynamics: in the former, the Alfvén wave is induced, but in the latter it is not. In the presence of both rotation
andmagnetic field, slower rotation tends to convert more kinetic energy to magnetic energy, and the orientation
of rotation and field is important for the dynamics; namely, a nonzero angle between rotation and magnetic
field causes more efficient energy conversion and a stronger wave than the zero angle. It is found that these
isotropic and anisotropic flows in the weakly nonlinear regime exhibit a behaviour similar to the turbulent
flows. Therefore, it provides some implications for the study of turbulent flow, e.g. for the decay of rotating
MHD turbulent flow, the different angles between rotational and magnetic axes should be more thoroughly
studied.
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