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The stability of Couette flow in atoroidal magnetic field
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Abstract

The stability of the hydromagnetic Couette flow is investigatedwhen a constant current is applied along the axis of the
cylinders. It is shown that if the resulting toroidal magnetic field depends only on this current, no linear instability to axisymmetric
disturbances is possible.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetorotational instability (MRI) is important to theoretical astrophysics because itis the only linear instability
known to grow robustly under the conditions prevailing in most accretion disks: an electrically conducting fluid,
rotating with local angular velocityΩ(r ); a positive gradient of specific angular momentum,∂(r 2Ω)2/∂r > 0 (stable
by the Rayleigh criterion); and a negative gradient of angular velocity,∂Ω2/∂r < 0. It was revealed by astrophysicists
Balbus and Hawley in the early 1990’s. Developments in astrophysics, too large to survey in this letter, have grown
up around this problem [1]. In the ongoing investigation of the best way to demonstrate MRI in the laboratory, several
configurations have been examined. Generally, they involve hydromagnetic Couette flow between rotating cylinders
along the axis of which a magnetic field is applied. On the other hand, if an electric current is applied along the axis,
a toroidal component to the magnetic field results. Some of the earliest and most relevant theoretical results were
those of Velikhov [2] and Chandrasekhar [3], though both these researchers considered ideal Taylor–Couette flow.
Elsewhere, Chandrasekhar [4] included dissipation but bydropping one term, assumed to be small, the instability
envisioned here cannot arise [5,6]. Shortly after Chandrasekhar’s results, Gotoh [7] and then DiPrima and Pan [8]
investigated theoretically the effect of a purely toroidal magnetic field on the stability of Couette flow in the Rayleigh-
unstable dynamical regime.

More recently researchers have begun to focus on thecase where the magnetic field has a toroidal component
as well as an axial component, while the basic flow is in the Rayleigh-stable regime dynamically; the regime in
which MRI is found. For instance, R¨udiger et al. [9] have reported on ongoing work of this type. The purpose of
the present note is to show that without the axial magnetic field, with only the toroidal field due to an axial current,
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the flow is strictly stable to linear axisymmetric disturbances. This is demonstrated using a method of quadratic
functionals popularized by Chandrasekhar [4], originally used by Synge [10]. Along with this, an operator notation
is introduced, which aids in keeping track of the functionals involved. To the extent that most current work on the
subject uses asymptotic and computational methods, this approach is different. The first author has been working with
the astrophysicist Goodman to bring these techniques to bear on MRI problems [6].

2. The governing equations and derivation of stability

The basic flow isv = r Ωeθ (in cylindrical coordinatesr, θ, z) between two cylinders of radiir1, r2 and angular
velocitiesΩ1,Ω2:

Ω(r ) = a + b

r 2
, a = Ω2r 2

2 − Ω1r 2
1

r 2
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1

, b = Ω1 − Ω2

r −2
2 − r −2

1

. (1)

A toroidal magnetic fieldB = 2J
r eθ ≡ H (r )eθ permeates the fluid from a constant line currentJ along the axis of the

cylinders, in whichρ is the density of the fluid andν is the kinematic viscosity,σ is the electrical conductivity, andµ
is the magnetic permeability. The magnetic diffusivity is defined asη = (4πµσ)−1. The flow regime also admits the
possibility of a contribution to the toroidal component of the base magnetic field from an electric current in the fluid
in the axial direction, but that is ignored here. Nondimensional parameters for the flow might be magnetic Prandtl
numberPm = ν/µ, and Reynolds numberR = Ω1r 2

1/ν. The results to be derived are independent ofPm andR.

2.1. The governing equations

Following DiPrima and Pan [8], linear perturbations are taken to be independent ofθ and proportional to est+ikz:
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The axisymmetric linearized equations of motion become

sβθ = η(DD∗ − k2)βθ +
(

dH

dr
− H

r

)
ϕr − r

dΩ
dr

βr , (2)

sϕθ = ν(DD∗ − k2)ϕθ − µ

4πρ

1

r
(D∗ H )βr − 1

r

d

dr
(r 2Ω)ϕr , (3)

sβr = η(DD∗ − k2)βr , (4)

s(DD∗ − k2)ϕr = ν(DD∗ − k2)2ϕr − k2 µ

2πρ

H (r )

r
βθ − 2Ωk2ϕθ . (5)

For perturbations, we follow Chandrasekhar’s notationD f ≡ d f/dr , D∗ f ≡ r −1D(r f ). The vertical componentsϕz

andβz have been eliminated from Eqs.(2)–(5)using∇·v′ = ∇·H′ = 0.
The boundaries are impenetrable and “no-slip”, so that

ϕr = Dϕr = 0, (6)

ϕθ = 0, at r = r1, r2. (7)

The condition onDϕr derives from the continuity equationD∗ϕr = −kϕz sinceϕz = 0 on the walls. We take the
cylinders to be partially conducting as was considered by Roberts [11]; requiring that the magnetic perturbations
match onto exterior solutions satisfying∇ × H′ = 0, which are well-behaved asr → 0 and asr → ∞. The boundary
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conditions on the radial component are therefore

D∗βr = βr
[k I0(kr)]

I1(kr)
at r = r1, (8a)

D∗βr = −βr
[kK0(kr)]

K1(kr)
at r = r2, (8b)

while those on the toroidal component are

σ ′

σ
D∗βθ = βθ

[k I0(kr)]
I1(kr)

at r = r1, (9a)

σ ′

σ
D∗βθ = −βθ

[kK0(kr)]
K1(kr)

at r = r2, (9b)

whereIn(kr) andKn(kr) are the modified Bessel functions (of ordersn = 0, 1 in this work), σ ′ is the conductivity
of the walls. So whenσ ′ → 0, the insulating boundary conditions are recovered. And whenσ ′ → ∞, perfectly
conducting boundary conditions result.Eqs. (6)–(9b)impose ten boundary conditions on the tenth-order differential
system(2)–(5).

2.1.1. The radial magnetic perturbation
It becomes clear that(4) uncouples from the rest of the system. It is important to show that with(8a)and(8b), the

only solution of(4) which may occur if Re(s) ≥ 0, that is, for neutral or amplified disturbances isβr = 0. Such a
conclusion was drawn by Gotoh [7] some time ago, though with different boundary conditions. This is accomplished
by multiplying (4) by r β̄r and integrating fromr = r1 to r = r2 to obtain
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−
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which follows after integrating by parts and applying the boundary conditions(8a)and(8b). From thereal parts of the
extremes of(10)we conclude that Re(s) < 0. Henceforth then, we will setβr = 0 in the system.

2.2. Operator formulation

In order to simplify the derivation of the stability criterion, we make a reformulation. An operator notation is
introduced, which clarifies the nature of the analysis. The system thereby becomes

−sMϕr = νM∗Mϕr − k2 µ

πρ

J

r 2
βθ − 2Ωk2ϕθ . (11)

sβθ = −ηMσ ′βθ − 4J

r 2
ϕr , (12)

sϕθ = −νM0ϕθ − 1

r

d

dr
(r 2Ω)ϕr . (13)

In this notation,M, M∗, M0, and Mσ ′ all denote−DD∗ + k2, but are considered different operators because of
the distinct boundary conditions satisfied by the functions on which they act [12]. For this reason,M∗M denotes
(−DD∗ + k2)2. That is,M acts on functions that have the same boundary conditions asϕr [Eq. (6)], M∗ assumes that
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the functions satisfy no particular boundary condition, whereasM0 uses the boundary conditions ofϕθ [Eq. (7)] and
Mσ ′ , the boundary conditions ofβθ [Eqs.(9a)and(9b)]. Consequently, whenσ ′ → 0, the case of insulating boundary
conditions,Mσ ′ → M0. The case of perfectly conducting boundary conditions, that is,σ ′ → ∞ also has meaning as
will be shown.

Introduce an inner product,

〈 f, g〉 =
∫ r2

r1

r f (r )ḡ(r )dr, (14)

in which the overbardenotes complex conjugation. The differential operatorsM, M∗ M, andMσ ′ all have the property
of beingpositive definitein this inner product. For example, let us show that〈Mσ ′βθ , βθ 〉 > 0. This follows quite
readily by a calculation similar to(10)

〈Mσ ′βθ , βθ 〉 =
∫ r2
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r β̄θ (r )(−DD∗ + k2)βθ (r )dr

(and integrating by parts to obtain)
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The boundary conditions(9a) and(9b) were applied. Thecase whereσ ′ → ∞, is dealt with by noticing that the
boundary conditions terms vanish leading to

〈M∞βθ , βθ 〉 =
∫ r2

r1

r (|D∗βθ |2 + k2|βθ |2)dr.

Thus, for all wall conductivitiesσ ′, 0 ≤ σ ′ ≤ ∞, 〈Mσ ′βθ , βθ 〉 > 0.
The calculations for〈Mϕr , ϕr 〉 and 〈M0ϕθ , ϕθ 〉 are similar to those for〈M∞βθ , βθ 〉, since the boundary terms

do not arise when the boundary conditions(6) and(7) are applied. Likewise, it may be shown that〈M∗ Mϕr , ϕr 〉 =
〈Mϕr , Mϕr 〉 ≡ ‖Mϕr ‖2 > 0.

2.3. Derivation of the stability criterion

We want toderive the following criterion.MRI is suppressed, in fact no instability at all occurs, for the system
(2)–(5). We also conclude that there are no marginal modes.

The derivation proceeds as follows. Make use of the inner product(14) as in(15), forming that of(11) with ϕr to
obtain

〈(νM∗M + sM)ϕr , ϕr 〉 = k2µ

πρ
〈Jr−2βθ , ϕr 〉 + 〈2Ωk2ϕθ , ϕr 〉. (16)

From(12)and(13), this may be re-written as

〈(νM∗M + sM)ϕr , ϕr 〉 = − k2µ

4πρ
〈βθ , (ηMσ ′ + s)βθ 〉 − 1

a
〈Ωk2ϕθ, (νM0 + s)ϕθ 〉, (17)

since1
r

d
dr (r 2Ω) = 2a is a positive constant. It was established by Synge [10] andby Chandrasekhar [4] that for the

azimuthal velocity functionϕθ , the following is true:

Re〈(−DD∗ + k2)ϕθ ,Ωk2ϕθ 〉 = Re〈Ωk2ϕθ , (−DD∗ + k2)ϕθ 〉 > 0, (18)
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by virtue of(7). Hence, taking the real part of(17), combining terms having the growth rates, the result is

Re(s)

{
〈Mϕr , ϕr 〉 + a−1〈Ωk2ϕθ , ϕθ 〉 + µk2

4πρ
〈βθ , βθ 〉

}

= −ν‖Mϕr ‖2 − µηk2

4πρ
〈Mσ ′βθ , βθ 〉 − a−1νRe(〈M0ϕθ ,Ωk2ϕθ 〉)

< 0. (19)

An immediate consequence of this is Re(s) < 0, and hence stability. Since Re(s) is strictly negative, there are no
marginal modes.

3. Conclusions

The desire to test for MRI in the laboratory inspires several configurations. R¨udiger et al. [9] showed that imposing
both azimuthal and axial magnetic fields together reduces the critical Reynolds number to obtain MRI. They go
on to conclude that incorporating an axial current is the most promising design for obtaining MRI in a laboratory
experiment. It is of interest then how these results compare. One might therefore study the set-up in which both an
axial current and an axial magnetic field occur. If a measure of the ratio of the toroidal to axial magnetic fieldB0 is
given by

γ = 2J

B0r1
,

whereJ is the current andr1 is the radius of the inner cylinder, then the prediction here is that asB0 → 0, γ → ∞,
and in this limit all of the eigenvalues of the linearized axisymmetric stability equations will exhibit Re(s) < 0. Our
analytical results suggest that the axialcurrent is ultimately stabilizing. The inclusion of some axial component to the
magnetic field appears to be necessary in order to see axisymmetric modes of instability.
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