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We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a

liquid metal over a wide range of Reynolds numbers, Re� 103–106. The free Shercliff layer is formed by

imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial end cap

rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by

velocity fluctuations in the r-� plane. The instability appears with an Elsasser number above unity, and

saturates with an azimuthal mode number m which increases with the Elsasser number. Measurements of

the structure agree well with 2D global linear mode analyses and 3D global nonlinear simulations. These

observations have implications for a range of rotating MHD systems in which similar shear layers may be

produced.
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The destabilization of rotating sheared flows by an
applied magnetic field in magnetohydrodynamics (MHD)
is a topic with astrophysical and geophysical implications,
and has been the subject of a number of experimental and
theoretical efforts. Such destabilization can be caused by
the magnetorotational instability (MRI), in which a mag-
netic field of sufficient amplitude can destabilize Rayleigh-
stable rotating sheared flows [1]. In this Letter, we report
the observation of an instability which, like the MRI,
appears in a sheared rotating fluid when a magnetic field
is applied. But rather than playing a role in the dynamics of
the instability, as in the case of the MRI, the magnetic field
here acts to establish free shear layers which extend from
axial boundaries and which are subject to a hydrodynamic
instability.

Hartmann and Shercliff laid the groundwork in under-
standing the effect of magnetic fields on shear layers in
conducting fluids. Hartmann studied boundary layers nor-
mal to an external applied field [2], and Shercliff extended
his analysis to include boundary layers parallel to the
applied field [3]. Free Shercliff layers can be established
in rotating MHD systems when the line-tying force of an
axial magnetic field extends a discontinuity in angular
velocity at an axial boundary into the bulk of the fluid.
These shear layers are similar to the Stewartson layers that
extend from discontinuous shearing boundaries in rapidly
rotating systems [4], but for the free Shercliff layer dis-
cussed here, it is the magnetic field tension rather than the
Coriolis force that leads to equalization of the angular
velocity in the axial direction.

Free Shercliff layers were first realized experimentally
by Lehnert in a cylindrical apparatus with a free surface at
the top and a rotating ring at the bottom axial boundary [5].
Lehnert observed the formation of vortices at the location
of the shear layers, though he attributed their formation to

discontinuities in the free surface at the shear layer location
rather than to the shear itself. These layers were then
described analytically by Stewartson [6] and Braginskii
[7]. The formation of free Shercliff layers in a cylindrical
Taylor-Couette device has been predicted computationally
[8], but these simulations were axisymmetric and thus
incapable of evaluating the stability of these shear layers
to nonaxisymmetric perturbations.
Both free Shercliff layers and Stewartson layers can be

present at the tangent cylinder of spherical Couette sys-
tems. The Kelvin-Helmholtz destabilization of these layers
has been studied extensively through computation [9–11].
Stewartson layers have been observed experimentally in
spherical and cylindrical geometry and are found to be
unstable to nonaxisymmetric modes, which is consistent
with simulations [10,12,13].
The Princeton MRI experiment is a Taylor-Couette ap-

paratus consisting of two coaxial stainless steel cylinders
as shown in Fig. 1. The gap between the cylinders is filled
with a GaInSn eutectic alloy which is liquid at room
temperature. Differential rotation of the cylinders sets up
a sheared rotation profile in the fluid. If the cylinders were
infinitely long, the fluid between the cylinders would as-
sume an angular velocity� at a radius rmatching the ideal
Couette solution in steady state, �ðrÞ ¼ aþ b=r2. The
constants a and b are found by matching the solution to
the imposed rotation rates at the inner and outer cylinder
boundaries. In conventional Taylor-Couette devices, the
end caps are typically corotated either with the inner or
outer cylinder. This produces strong secondary circulation
and angular momentum transport to the axial boundaries,
resulting in a deviation from the ideal rotation profile [14].
A novelty of this apparatus is the configuration of the axial
end caps, each of which is split into two differentially
rotatable acrylic rings, giving four independent rotation
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rates: those of the inner cylinder, outer cylinder, inner
rings, and outer rings. In previous experiments using water
as the working fluid, this configuration was very effective
at reducing the influence of the axial boundaries, allowing
the generation of quiescent flows in the bulk of the fluid
with Reynolds numbers Re ¼ �1r1ðr2 � r1Þ=� above 106

[15]. The experimental parameters are shown in Table I.
Fluid velocities are measured with an ultrasound

Doppler velocimetry (UDV) system [18,19]. Ultrasonic
transducers are mounted on the outer cylinder at the mid-
plane of the experiment. A transducer aimed radially and
others aimed tangential to the inner cylinder allow deter-
mination of the radial and azimuthal velocity components.
Two tangential transducers aimed identically but separated

azimuthally by 90� provide information about azimuthal
mode structure.
A set of six solenoidal coils applies an axial magnetic

field to the rotating fluid. Fields below 800 Gauss can be
applied indefinitely, while the application time for higher
fields is limited by the resistive heating of the coils. An
array of 72 magnetic pickup coils placed beyond the outer
cylinder measures @Br=@t.
Experiments were run using both Rayleigh-stable

and -unstable flow states. The Rayleigh-stable states had
component rotation speeds in the ratio [1.0, 0.55, 0.1325,
0.1325] for the inner cylinder, inner ring, outer ring, and
outer cylinder, respectively. The ideal Couette solution for
these inner and outer cylinder speeds satisfies Rayleigh’s
stability criterion that the specific angular momentum in-
crease with radius: @ðr2�Þ=@r > 0. The ring speeds were
chosen empirically to generate an azimuthal rotation pro-
file in the hydrodynamic case that closely matches the ideal
Couette profile at the midplane. The Rayleigh-unstable
states were generated using component speeds in the ratio
[1.0, 1.0, 0, 0]. These flows violate Rayleigh’s criterion and
exhibit large velocity fluctuations in the absence of a
magnetic field.
A single run of this experiment starts with an accelera-

tion phase of two minutes, during which the sheared azi-
muthal flow develops. The axial magnetic field is then
applied, initially resulting in the damping of hydrodynamic
fluctuations. If the magnetic field is strong enough to
satisfy the requirement that the Elsasser number � ¼
B2=4�����> 1, where �� is the difference between
the inner- and outer-ring rotation rates, the instability
grows up as a large-scale coherent mode. It manifests itself
as a fluctuation in the radial velocity and azimuthal veloc-
ity, where significant perturbations of more than 10% of the
inner cylinder speed are observed. An ultrasonic transducer
inserted on a probe and aimed axially at an end cap did not
measure axial velocity fluctuations when the instability
was excited, suggesting that the flow due to the instability
is mainly in the r-� plane. Correlated magnetic fluctuations
are observed at the highest rotation rates and applied
fields. The instability develops on both the Rayleigh-stable
and -unstable backgrounds, and typical mode rotation
rates exceeds the outer cylinder rotation rate �2 by
�0:1ð�1 ��2Þ.
The instability was observed over a range of more than

3 orders of magnitude in rotation rate in the Rayleigh-
unstable configuration, as shown in Fig. 2, with Re ¼
820� 2:6� 106. The instability is present even with
a magnetic Reynolds number Rm ¼ �1r1ðr2 � r1Þ=
�� 10�3, indicating an inductionless mechanism in which
induced magnetic fields are dynamically unimportant.
For� of order one, the primary azimuthal mode number

at saturation is m ¼ 1, with phase-locked higher-order
mode numbers typically present at a smaller amplitude.
The measured mode structure is shown in Fig. 3. It is

TABLE I. Parameters of the apparatus [16] and liquid metal
working fluid [17].

Parameter symbol value units

Height h 27.9 cm

Inner cylinder radius r1 7.06 cm

Outer cylinder radius r2 20.3 cm

Density � 6.36 g=cm3

Kinematic viscosity � 2:98� 10�3 cm2=s
Magnetic diffusivity � 2:57� 103 cm2=s
Inner cylinder rotation rate �1 0.25–800 rpm

Axial magnetic field B 0–4500 Gauss

FIG. 1 (color online). Diagram of Princeton MRI experiment.
Each end cap is split into an inner ring (IR) and an outer ring
(OR). Differential rotation of these rings produces a disconti-
nuity in the angular velocity at the axial boundary. Overlaid on
the right half of the figure is a plot of the shear ðr=�Þð@�=@rÞ
from a nonlinear MHD simulation with differential rotation
between the end cap rings and a strong axial magnetic field
[21]. The free Shercliff layers are the regions of strong negative
shear extending from the interface between the rings.
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common for an m ¼ 2 mode to grow up before an m ¼ 1
dominates at saturation. High-� scenarios at very slow
rotation rates show that m at saturation increases as �
increases. Primary mode numbers up to m ¼ 5 have been
observed with � ¼ 127 at a rotation rate of 0.25 rpm.

The necessity of shear at the axial boundary has been
verified experimentally. Experiments were performed with
the components rotating in the standard Rayleigh-stable
configuration, but with a number of different inner ring
speeds. The critical magnetic field for instability varied
with the differential rotation between the end cap rings as
expected. When the inner rings and outer rings corotated,
the instability was not observed.

The free shear layer has been measured experimentally
at low Re and high�where it penetrates to the midplane of
the experiment as shown in Fig. 4. The width of the layer
measured at a time just before the onset of instability is
consistent with the expected width scaling for a Shercliff

layer �� 1=
ffiffiffiffiffi

M
p

, where the Hartmann number M ¼
Bl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4����
p

and l ¼ r2 � r1 is a characteristic length.
The onset of the instability is associated with a decrease
in the mean shear in this layer.

Nonlinear numerical MHD simulations have been
performed with the HERACLES code [20], modified to in-
clude finite viscosity and resistivity [21]. The simulations
were performed in the experimental geometry with a

200� 64� 400 grid in r̂, �̂, and ẑ, with Re ¼ 4000 and
a range of Rm and M. These simulations show the for-
mation of the free Shercliff layer extending from the

discontinuity at the axial boundaries, as shown in Fig. 1.

The axial length of the shear layer scales with
ffiffiffiffi

�
p

, which
seems to arise from a competition of magnetic forces,
which act to extend the shear layer into the fluid, and
poloidal circulation generated by the axial boundaries,
which acts to disrupt the free shear layer. The simulations
also produce an instability requiring �> 1 for onset and
suggest that a minimum penetration depth of the shear
layer is required for development of the instability. Like
the experimental observations, the unstable modes exhibit
a spiral structure, and a cascade is observed from higher
azimuthal mode number during the growth phase of the
instability to a dominant m ¼ 1 at saturation.
A global linear stability analysis was performed to in-

vestigate unstable modes in the experimental geometry.
The analysis found eigenvalues of the linearized nonideal
MHD equations discretized across 2048 grid cells in the
radial direction, assuming sinusoidal azimuthal depen-
dence with a specified mode number and no axial depen-
dence. Unstable hydrodynamic solutions were sought
for realistic fluid parameters and for a zeroth order,

Λ

FIG. 2. Stability diagram for the Rayleigh-unstable back-
ground flow state. The area of the circles is proportional to the
power in the dominant Fourier harmonic measured by a tangen-
tial transducer at r ¼ 19:2 cm, normalized to the square of the
inner cylinder speed. The ‘x’s indicate stability. The stability
diagram for the case starting from a Rayleigh-stable background
is similar, but was measured over a smaller range of speeds. The
inset plot shows a sample time trace of the velocity measured
at one point in the flow, with the magnetic field applied in
the region between the dashed vertical lines. (�1 ¼ 200 rpm,
B ¼ 2900 G.)

FIG. 3 (color online). Comparison of measured unstable
mode with results from simulation. All are contour plots of
azimuthal velocity at the midplane with the m ¼ 0 contribution
subtracted. Red indicates positive velocity (counterclockwise),
and blue indicates negative velocity (clockwise). Upper left:
Experimental measurement with � ¼ 1:4, reconstructed from
projecting the time behavior of the azimuthal velocity as mea-
sured by one UDV transducer onto the r-� plane. Upper right:
Experimental measurement with � ¼ 50. Lower left: Growing
m ¼ 1 mode produced by a hydrodynamic linear stability analy-
sis of an axially independent shear layer. Lower right: Unstable
mode from nonlinear MHD calculation with Re ¼ 4000,
Rm ¼ 10, and � ¼ 1.
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background rotation profile consisting of a free shear layer
represented by a hyperbolic tangent centered between
the inner and outer cylinders. Angular velocity profiles
with a sufficiently narrow shear layer were found to be
hydrodynamically unstable to nonaxisymmetric Kelvin-
Helmholtz modes with a similar structure to those observed
experimentally. The most unstable mode number increases
with decreasing shear layer width, similar to the experi-
mental observations of the saturated states.

The results presented here describe a minimummagnetic
field required for onset of the instability. Simulations have
shown that a sufficiently strong magnetic field will restabi-
lize this instability, similar to the simulation results in
spherical geometry [9]. Experimentally, the decreasing
saturated amplitude with increasing field at small rotation
rates, shown in Fig. 2, suggests that this critical field
strength is being approached. But the limits on controllable
slow rotation and on the availability of strong magnetic
fields precluded verification of the complete restabilization.

This free-Shercliff-layer instability exhibits strong sim-
ilarities to the expected behavior of the standard MRI in a
Taylor-Couette device because in both cases a magnetic
field acts to destabilize otherwise stable flow and in both
cases the associated angular momentum transport results in
a large modification to the azimuthal velocity profile. But
this instability is a hydrodynamic instability on a back-
ground state established by the magnetic field and is
present with Rm � 1. While there are inductionless rela-
tives of the standard MRI, such as the so-called HMRI
which relies on azimuthal and axial applied magnetic fields

[22,23], the unimportance of induction here is in stark
contrast to the requirement of a finite minimum Rm for
the standard MRI in an axial magnetic field.
These results have particular relevance to other MHD

experiments in which similar shear layers may be estab-
lished. A spherical Couette MHD experiment produced a
nonaxisymmetric instability with applied magnetic field
that was claimed to be the MRI [24]. However, subsequent
simulations have attributed those observations to hydro-
dynamic instability of free shear layers [25,26], similar to
the observations that we report. We expect that other
cylindrical devices, such as the PROMISE 2 experiment
[27], could produce this instability. But the critical value of
� will likely change for experiments with different geo-
metric aspect ratios.
The free-Shercliff-layer instability is not expected to

impact the study of the MRI in this device since the
magnetic fields required for the MRI are weaker than those
required for the Shercliff layer instability at MRI-relevant
speeds [21].
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