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1 Introduction

A basic and simple question that one may ask about a stellarator plasma is whether it
should rotate – and, if so, in what direction and at what speed. One feels that a simple,
macroscopic property like rotation, which is easily measured and potentially important
for MHD stabilisation and turbulence suppression, should be predicted by theory. In
this paper we investigate the basic question of how the magnetic configuration affects
plasma rotation.

2 Rapid rotation

Nearly all theory of plasma confinement rests upon an expansion in the smallness of the
ion gyroradius ρi = vT i/Ωi, compared with the macroscopic length scale, δ = ρi/L� 1.
It is therefore natural to distingish between rapid plasma rotation, V ∼ vT i, and slow
rotation, V ∼ δvi. Rapid rotation is relatively easily dealt with, as it turns out that it
is governed by a simple theorem [1]. If the magnetic field is written (locally) as

B = ∇ψ ×∇α, (1)

then rapid plasma rotation can only occur if the field strength in lowest order only
depends on ψ and the arc length l along the field, i.e., if

B ' F (ψ, l) (2)

for some function F . Moreover, the plasma flow velocity is then related to the radial
electic field E = −∇Φ(ψ) by the relation

V = −dΦ
dψ

∇ψ ×∇B
B · ∇B

, (3)

so that the flow occurs along lines of constant magnetic field strength, B = |B|. The
condition (2) is satisfied by quasi-helically and quasi-axisymmetric fields. Conversely,
one can show that this condition implies quasi-symmetry if the rotational transform is
irrational [2].

The conditions (2) and (3) are approximate in the sense that they only need to be
satisfied to lowest order in δ, but they follow directly in zeroth order from an expansion
of the Vlasov equation. They are therefore valid in all collisionality regimes and are
independent of the cross-field transport, whether this is neoclassial or turbulent.
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3 Slow rotation

In most stellarator configurations, then, only slow rotation can occur, V ∼ δvT i, and
we now proceed to discuss what determines the rate of such rotation. Consider the
momentum equation, summed over all plasma species,

J×B−∇p = ∇ · (ρVV + π) +
∂(ρV)
∂t

, (4)

where J is the plasma current, p the total (electron + ion) pressure, ρ the density, and
π the viscosity tensor. We write B = B0 + B1, J = J0 + J1 and p = p0(ψ) + p1, where

J0 ×B0 = p′0(ψ)∇ψ, (5)

and ψ is the toroidal flux. The quantities p1, B1 and J1 thus represent turbulent
fluctuations present in the plasma as well as any small deviation of the equilibrium
from Eq. (5). Equation (4) now becomes

∂(ρV)
∂t

− J1 ×B0 = J0 ×B1 + J1 ×B1 −∇p1 −∇ · (ρVV + π). (6)

We multiply this equation by B0 and J0, respectively, and take the flux-surface average,
〈· · ·〉, giving

∂ 〈ρV · J0〉
∂t

+ 〈J1 · ∇p0〉 = −〈(∇ · S) · J0〉 , (7)

∂ 〈ρV ·B0〉
∂t

= −〈(∇ · S) ·B0〉 , (8)

where S = ρVV + π + M is the total stress tensor, with

M =
1

µ0

(
B2

1

2
I−B1B1

)
,

the Maxwell stress associated with B1. Equations (7) and (8) are exact: no approxi-
mations have been made, but in Eq. (7) the term

〈J1 · ∇p0〉 = −p
′
0(ψ)
µ0c2

∂ 〈E · ∇ψ〉
∂t

can be neglected, since it is of order (vA/c)2 times the left-hand side. Equations (7) and
(8) govern the flow in the two “natural” directions within the flux surface, tangentially
to J0 and B0 respectively, and show that this flow is damped or driven by Reynolds
stress, ρVV, viscous stress, π, and Maxwell stress, M. In a turbulent plasma, these
stresses can be decomposed into average and fluctuating parts, e.g.,

π = πnc + πturb,

where the average part is determined by neoclassical theory. The fluctuating part
depends on the nature of the turbulence, which we shall assume obeys the conventional
assumptions made in gyrokinetics. We thus take k⊥ρi ∼ 1 and for each ion species a
we assume

V

vTa
∼ f̃a
fa
∼ B1

βB0
∼ eaφ̃

Ta
∼ δ, (9)
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where ea is the charge, vTa = (2Ta/ma)1/2 the thermal velocity and φ̃ is the fluctuating
electrostatic potential. The distribution function is denoted by fa and its turbulent
fluctuation by f̃a. It follows from the assumptions (9) that the various turbulent stresses
in Eqs. (7) and (8) are of order

∇ · (ρVV)turb ∼ k⊥δ2p,

∇ · πturb ∼ k⊥δp, (10)

∇ ·Mturb ∼ k⊥δ2βp.

The Reynolds and Maxwell stresses are therefore small in comparison with the viscous
stress. However, they are comparable to the viscous stress produced by neoclassical
effects in the absence of turbulence,

∇ · πnc ∼ δp/L,

where we have recognised that the neoclassical stress tensor,

πnc = (p‖ − p⊥)(bb− I/3) +O(δ2p), (11)

varies on the macroscopic length scale L rather than the turbulent length scale k−1
⊥ ∼ ρi.

Here p‖ − p⊥ ∼ δp is the pressure anisotropy and b = B/B is the unit vector along
the magnetic field. Locally, the largest force thus comes from the turbulent fluctuating
viscous force ∇ · πturb. Nevertheless, it is still the neoclassical viscosity (11) that
determines the plasma rotation on large scales.

To establish this result, we recall that the viscosity tensor for each species is equal
to [3]

πa = πa‖ + πag,

where πa‖ is of the form (11), we have neglected the collisional cross-field viscosity, and
the gyroviscosity is given by

πag =
1
Ω

[b× K · (I + 3bb)− (I + 3bb) · K× b] ,

K = ∇ ·
(
ma

∫
vvvfad3v

)
,

in leading order. The average (neoclassical) part of the gyroviscosity is thus smaller
than πa‖ whilst the turbulent part is locally of the order indicated in Eq. (10). However,
since the turbulent gyroviscosity involves the gradient of f̃ , its local value is much larger
than its average over any length scale exceeding the gyroradius.

Keeping this result in mind, we now integrate Eqs. (7) and (8) over the volume ∆V
between two flux surfaces, ψ1 and ψ2, several gyroradii apart but still close to each
other on the macroscopic length scale, so that the distance between them ∆r satisfies

ρi � ∆r � L.

This gives

∂

∂t

∫
∆V

ρV ·G dV = −
[
V ′(ψ) 〈G · S · ∇ψ〉

]ψ2

ψ1
+
∫

∆V
S : ∇G dV, (12)
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where V (ψ) is the volume enclosed by the flux surface ψ and G denotes either J0 or
B0. Because the gyroviscosity has a small spatial average, as discussed above, it does
not contribute much to Eq. (12). If ∆V � V , the contribution from the turbulent
Reynolds and Maxwell stresses is dominated by the first term on the right, which is of
order [

V ′(ψ) 〈G · (ρVV + M) · ∇ψ〉
]ψ2

ψ1
∼ δ2p|G|L2,

and exceeds the corresponding second term on the right by a factor of about L/∆r. It
is therefore much smaller than the contribution from parallel viscosity∫

∆V
π‖ : ∇G dV ∼ δp|G|L∆r.

We can thus conclude that, in leading order, the macroscopic rotation is determined
by parallel viscosity alone,

∂

∂t

∫
∆V

ρV ·G dV '
∫

∆V
π‖ : ∇G dV, (13)

On shorter length scales, turbulent Reynolds and Maxwell stresses may affect the ro-
tation and give rise to zonal flows, but the large-scale rotation is governed by parallel
viscosity. The only exception occurs if its contribution to Eq. (13) for some reason
vanishes in leading order, so that it becomes π‖ ∼ δ2p instead of π‖ ∼ δp. This can
only happen in magnetic configurations that are intrinsically ambipolar, since when
G = J, the right-hand side of Eq. (13) represents the neoclassical radial current,

〈J · ∇ψ〉 =
〈
π‖ : ∇G

〉
/p′0(ψ),

as follows from Eq. (7) in steady state. But intrinsic ambipolarity holds if [4] and only
if [5] the magnetic field is quasisymmetric, and we can thus conclude that only then is
stellarator rotation tokamak-like in the sense that gyrokinetic turbulence can affect the
plasma rotation. Otherwise the rotation is determined by neoclassical theory on radial
length scales exceeding ρi.

4 Quasi-isodynamic configurations

Having established that plasma rotation is governed by neoclassical theory in most
stellarators, we finally investigate the consequences for quasi-isodynamic configurations
[6]. In a quasi-isodynamic magnetic field the cross-field drift vanishes on a time average,
i.e., the field is omnigenous, and the trapped particles precess poloidally around the
torus rather than toroidally or helically. In such a field, it can be shown [7] that at low
collisionality the solution of the first-order drift kinetic equation consists of two terms:
a tokamak-like term and a term specific to stellarators, i.e.,

fa =
(

1 +
eaφ1

Ta

)
fa0 + fat + fas,

with

fat = ga +
µ0J(ψ)v‖

2πΩa

∂fa0

∂ψ
,

fas = −∂fa0

∂ψ

∂

∂α

∫ min(Bmax,λ−1)

B
h
∂

∂B′

(
v′‖
Ω′a

)
dB′
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Here J(ψ) denotes the toroidal current enclosed by the flux surface labelled by ψ,
Bmax(ψ) denotes the maximum magnetic field strength on that surface, λ = v2

⊥/v
2B,

Ω′a = eaB
′/ma, v′‖ = σv(1− λB′)1/2, the function h is defined by

−(B×∇ψ) · ∇B
B · ∇B

=
µ0J(ψ)

2π
+
∂h

∂α
,

and the function ga is determined by a kinetic equation that is identical to that solved
in the theory for banana-regime transport in tokamaks. More importantly, the entire
tokamak-like term fat is proportional to the enclosed toroidal current J(ψ), whilst the
stellarator term, fas, is independent of the collision operator and does not carry any
net toroidal current. It follows that if the total toroidal current enclosed by a certain
flux surface vanishes, then the bootstrap current on that surface also vanishes. Quasi-
isodynamic stellarators are thus inherently current-free: if one does not specifically drive
a current (Ohmically or non-inductively), then there is no net bootstrap or Pfirsch-
Schlüter current either. In fact, the current carried by each species then vanishes
separately on a flux-surface average. There is therefore no net toroidal rotation. Locally,
the flow velocity is order δvT i, but the flow passing through any poloidal section of the
torus is much smaller.
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