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Abstract 

Stellarators and tokamaks with 3D effects provide unique challenges for the stability 

analysis of energetic particle driven Alfvén instabilities. First, due to the presence of 

both toroidal and poloidal equilibrium couplings, the Alfvén gap mode structures and 

continuum couplings are more complex than for 2D equilibria. Also, the fast ion orbit 

deviations from flux surfaces are generally larger than in the case of tokamaks. To 

address these issues, a !f particle-based approach has been developed that evaluates 

linear growth rates for such instabilities by accumulating the wave/particle energy 

transfers between a prescribed ideal MHD Alfvén eigenmode (e.g., obtained using the 

AE3D spectral eigenmode code) and a large collection of particles following their 

unperturbed orbits. This is currently a perturbative model, but inherently includes 

finite guiding center orbit deviations from flux surfaces for passing, trapped and 

transitional particle populations. Benchmarks have been made against axisymmetric 

calculations, indicating the effects of finite orbit width stabilization as "fast/<a> is 

increased. The calculation is global, readily parallelized and has been tested using 

several million particles. Besides providing linear growth rates, it is also useful for 

understanding the location of the particle-wave resonances in 3D systems and as a 

test-bed for particle loading and evolution techniques for nonlinear models 

 

Introduction 

Energetic particle destabilized Alfvén instabilities have been observed in a range of 

stellarators, including W7-AS
1
, CHS

2
, LHD

3
, TJ-II

4
, Heliotron-J

5
, and HSX

6
. The 

Alfvén gap structure of stellarators shares common modes with the tokamak, such as 

the toroidal, reversed shear and global Alfvén eigenmodes (TAE, RSAE and GAE) 

and introduces several new modes (helical and mirror Alfvén eigenmodes – HAE, 

MAE) that are unique to three-dimensional configurations. An additional issue that 

will influence the stability properties of resonantly destabilized Alfvén modes for 

stellarators is the displacement of energetic particle orbits off of flux surfaces. This 

displacement is generally larger than that for axisymmetric devices, where the 

conservation of the canonical angular momentum (P#) limits orbit deviations away 

from flux surfaces. Finite orbit width (FOW) effects on Alfvénic instabilities have 

been extensively analyzed for tokamaks
7,8,9,10,11,12,13,14,15

 and generally decrease the 

growth rates by a factor of the order
7,9

 $m/$b, where $m is the mode width and $b is a 

typical orbit displacement width (i.e., a banana width for trapped particles). This 

stabilization arises due to the fact that if only a fraction of the orbit trajectory 

intersects the region where the Alfvén mode structure is dominant, then this will cause 

the strength of the wave-particle resonance to be proportionally reduced
12

. It has also 



been noted that there could be regimes where FOW effects can have destabilizing 

influences, such as for fast ions born near the magnetic axis.
12

 The drift trajectories of 

such ions could cause them to sample Alfvénic mode regions further out in minor 

radius from their starting locations. Also, calculations have reported
8
 that FOW 

effects on passing particles with vfast/vA < 1 can be destabilizing in tokamaks. 

FOW effects on Alfvén instabilities in stellarators have mostly been considered 

analytically to date, with applications to W7-AS
16

. In this case, it was concluded that 

FOW effects should generally reduce Alfvén growth rates, although it was noted that 

there could be some regimes where FOW effects might introduce new resonances that 

would enhance instability
16

. 

This paper describes a new computational method for addressing FOW effects on 

Alfvén instabilities in stellarators, based on a !f particle-based approach. This is a 

perturbative wave-particle energy transfer method based on stable 3D reduced MHD 

Alfvén eigenmodes, as can be provided by codes such as CAS3D
17

 or AE3D
18

. These 

codes use VMEC equilibria so a range of different stellarator and shaped cross section 

tokamak configurations can be addressed. Also, a range of different Alfvén mode 

structures can be analyzed; here example applications for TAE, GAE and HAE modes 

will be presented. Finally, since the full guiding center particle trajectories are 

followed, there are no approximations made related to the ratio of the mode width to 

the particle orbit width. Also, all particle populations (trapped, passing, transitional) 

are consistently included. 

Analysis 

As mentioned above, a perturbative approach is used, based on a decomposition of the 

kinetic energy variational form into MHD and energetic particle (EP) components.  

For our ideal MHD model, we can show that: 
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i.e., the energy of the electromagnetic field is conserved. In the case of an interacting 

energetic particle species, we know that 
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and if the system is governed by MHD then WfMHD =Wfield  should hold, and 

!WfMHD

!t
=
!Wfield

!t
. We can then write 

!WfMHD

!t
 as follows: 
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This problem can now be solved in frequency space, based on the argument that 

energy 
 
!" 2 ! e2# t , resulting in: 
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The growth rate can be written more specifically as: 
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As indicated in Equation (5), the growth/damping is physically related to the 

magnitude and direction of the wave-particle energy transfers through the summation 

of J
EP
• E  increments over the particle population. To evaluate Equation (5), the first 

order distribution function is required. This is obtained by expanding drift-kinetic 

equation about the unperturbed distribution (i.e., the portion not including the time-

varying fields of the Alfvén eigenmode) as follows: 
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This results in the following equation for !f: 
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The above equation can be solved by integrating along the characteristics of the left-

hand side, i.e., the unperturbed particle orbits. The inhomogeneous term on the right-

hand side of Equation (10) is taken into account using particle weight functions, as 

indicated below: 
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The Alfvén eigenmode fields 
 
!  and A

!
 are included by using a complex Fourier 

representation for their time plus poloidal/toroidal angle dependencies; the radial 

dependence is interpolated on a grid: 
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This representation results in two weight equations (real and imaginary components) 

for each particle. Carrying along the two weights allows purely oscillating terms to be 

filtered out and only growing terms to be retained when the growth rate [Equation (5)] 

is evaluated. Typically, for the cases considered here, 30 to 100 (m,n) pairs are 

included in the above summation. As indicated, a finite (small) growth rate (!
0
) is 

allowed in the driving 
 
!  and A

!
 fields in addition to the oscillating component (!

r
). 

In evolving such a time domain model for Landau growth/damping effects, this 

artificial growth was included to avoid strongly resonant singular behavior (i.e., 

analogous to the frequency domain technique of deforming contours into the complex 

plane around singularities). It is then removed from the weight functions, before the 

instability growth is calculated. For the examples given in this paper, !
0
 has been set 

to zero, since the normal +/- variation of the resonant energy exchanges along the 

orbits has proven significant enough to avoid strongly resonant effects. 

The initial particle distribution function used here has generally been taken as uniform 

in the five-dimensional phase space (!,",# ,$,µ ), except for the special case of beam 

distributions where only particles with µ / ! = 0  have been used. Specific profiles and 



velocity space distributions are then applied through appropriate choice of the 

f (t = 0) / g(t = 0)  factor in the weight evolution equation. 

 
 

Figure 1 – (a) n = 2 continuum gap structure, and (b) radial eigenmode structure for a TAE 

occurring in the lowest open gap at 162 kHz. 

 

Figure 2 – TAE eigenmode structure projected onto an outer flux surface. 

Axisymmetric benchmark case 

This model was first applied to a tokamak benchmark case, for which growth rate 

results from several other codes were available. This exercise has proven quite 

valuable for correcting initial errors in the code, verifying the velocity and real space 

Jacobians, normalization factors, required number of particles and maximum cutoff 

energy in the particle distribution function. 

This benchmark case is based on a tokamak with aspect ratio R0/a = 4.4, R0 = 4 

meters, <B> = 5 Tesla, q(0) = 1.05, q(edge) = 1.65, deuterium ions, constant ion 

density at 5 x 10
19

 m
-3

, and a Maxwellian/isotropic fast ion distribution function. An 

n = 2 TAE mode was selected with a frequency of 162 kHz. The associated 

continuum gap structure and radial eigenmode structure are displayed in Figure 1. The 



corresponding eigenmode structure projected onto an outer flux surface is shown in 

Figure 2. 

 
 

Figure 3 – (a) Instantaneous growth rates vs. time, and (b) growth rates vs. time after running 

time averages are applied. 

For this case 10
6
 marker particles were used with a centrally peaked fast ion density 

profile and nfast(0) = 1.2 x 10
18

 m
-3

. Fast ion density and other profiles used in these 

calculations are shown in Appendix A. Instantaneous and time averaged growth rates 

are given in Figure 3 for a range of particle energies. As can be seen, the growth 

undergoes an initial transient period over several cycles of the driving Alfvén wave 

(the wave period in this case was 6.2 x 10
-6

 second) as the particles acquire a steady-

state energy exchange with the resonant fields. After this, a steady-state regime 

emerges that has residual oscillatory behavior (possibly related to the particle motions 

in the wave), but about a clearly defined average value.  

  

 

Figure 4 – (a) Comparison of growth rates vs. vfast/vA obtained from wave-particle energy 

transfer method (AE3D-K) for benchmark case with several other codes, (b) Comparison of 

growth rates for isotropic vs. beam-like particle distribution functions. 



Since no obvious secular drifts in these averages appear to be present, it is reasonable 

to apply running time averages, as are plotted in Figure 3(a) and determine converged 

growth rates from these averages. In Figure 4(a) the growth rates obtained from the 

wave-particle energy transfer model (referred to as AE3D-K) are compared with 

results from the KIN-1DEM! LIGKA
15

, NOVA-K
12

, and CAS3D-K
19

 codes. As can 

be seen, the results and scaling with vfast/vA are similar, with AE3D-K following 

roughly an average of the other results, except that CAS3D-K
19

 shows stronger 

damping for vfast/vA < 0.5. Also, AE3D-K has been extended to higher values of 

vfast/vA and shows a strong drop-off in its growth rate for vfast/vA > 1.5. Although some 

of this drop-off may be due to particle velocities moving out of resonance with the 

wave, it is also expected that a significant fraction of it is caused by FOW effects. 

Figure 4(b) compares growth rates between isotropic and beam-like energetic particle 

distributions. In the beam case a delta function about µ / ! = 0 has been used with a 

single direction for v||. Also, a single polarization (in the direction of the parallel 

wavenumber) for the Alfvén eigenmode has been used, which accounts for the 

difference between v|| > 0 (stable) and v|| < 0 (unstable) cases. In the unstable regime 

the v|| < 0 beam growth rates are a factor of 3 – 6 above those for the isotropic 

distribution function. It expected that this enhancement is caused by several factors: 

(a) the weaker variation in v|| along the orbit trajectories for the passing beam ions, 

resulting in resonant particles remaining in resonance with the wave for longer times 

as compared to the isotropic distribution which includes a greater variation in v|| due 

to the presence of passing and trapped particles; and (b) weaker FOW effects for the 

passing beam orbits, which generally have smaller displacements from their initial 

flux surfaces than the combined passing/trapped orbits that are present in the isotropic 

distribution. 

Stellarator examples 

(A) LHD 

LHD is a 10 field period helical system with aspect ratio R0/a = 7. An equilibrium has 

been selected with R0 = 3.7 meters, <B> = 3.1 Tesla, i(0) = 0.33, i(edge) = 0.97,  

 
 

Figure 5 – (a) n = 1 mode family continuum gap structure, (b) TAE eigenmode in the lowest 

frequency gap at 74.1 kHz. 



Hydrogen ions are used, with nfast(0) = 1.2 x 10
18

 m
-3

 and the ion density profile that 

aligns the gaps has been used, nion = nion(0)[ i(")/ i(0)]
2
, with nion(0) = 3 x 10

19
 m

-3
. 

This case has been constructed for testing of this model and does not correspond to 

and actual experimental discharge. An n = 1 TAE mode was selected with a frequency 

of 74.1 kHz. The associated continuum gap structure and radial eigenmode structure 

are displayed in Figure 5. The corresponding 3D eigenmode structure is shown in 

Figure 6.  

 

Figure 6 – LHD TAE eigenmode structure projected onto an outer flux surface. 

The time-evolving growth rates for the above eigenmode driven by an isotropic 

Maxwellian distribution are shown in Figure 7 along with the dependence of the 

averages of these growth rates on vfast/vA. 

 
 

Figure 7 – (a) instantaneous growth rates for LHD n = 1 TAE eigenmode driven by an 

isotropic distribution, (b) Variation of time averaged growth rates with vfast/vA."



As can be seen, the mode begins to be unstable for vfast/vA ~ 0.4 and has about a factor 

of two lower growth rate than the previous tokamak case. In order to diagnose the 

regions of phase space that drive the instability, the parallel coordinates method
20

 has 

been used, as shown in Figure 8. 

 
 

Figure 8 – Parallel coordinates plot for LHD isotropic particle distribution and alignment of 

flux coordinate regions with peaks in eigenmode structure. 

In this plot, the particle marker coordinates of energy, contribution to the growth rate 

(labeled here as weight), µ / ! (labeled here as bturn_inv), and radial flux coordinate 

are placed on 4 vertical parallel lines. The values of these four parameters for each 

particle are then connected by straight lines. The density of lines then allows one to 

infer, for example, which classes of particles account for the instability drive. This has 

been emphasized in Figure 8 by restricting the lines only to those that connect to 

positive values on the weight axis. It can be seen that the drive arises predominantly 

from passing ions (passing orbits are located in the region µ / !  < 1/Bmax ~ 0.22 for 

this equilibrium) in the 200 to 500 keV energy range and localized in two radial 

regions (0.14 < " < 0.3 and 0.52 < " < 0.8). Comparing these radial regions with the 

adjoining eigenmode radial structure indicates that the resonant destabilization is 

mostly coming from coupling to the m,n = (3, -1) and (1, -1) modes. 

The dominant drive from passing ions indicated in Figure 8(a) was further tested by 

carrying out calculations with a beam distribution function. Results for growth rates 

are shown in Figure 9. As indicated in Figure 9(a), after a transient period of about 3 

wave periods (one period = 1.35 x 10
-5

 second here) the growth rates settle into a 

steady state with lower noise levels than the isotropic model results of Figure 7(a). 

The beam model growth rates are also substantially larger than those for the isotropic 

model (a factor of 10 - 20) and become unstable at a lower vfast/vA ~ 0.25. This large 

difference between purely passing and isotropic distributions can be caused be several 

factors, including a lower degree of resonance along the trapped and transitional 

orbits (included in the isotropic case) as well as stronger FOW effects in the trapped 

populations than for the all passing case. 



  

Figure 9 – (a) instantaneous growth rates for LHD n = 1 TAE eigenmode driven by a beam 

distribution, (b) Variation of time averaged growth rates with vfast/vA for isotropic and beam 

distributions."

(B) TJ-II 

TJ-II is a 4 field period strong helical axis system with aspect ratio R0/a = 7.2. An 

equilibrium has been selected with R0 = 1.5 meters, <B> = 1 Tesla, i(0) = 1.55, 

i(edge) = 1.68, Hydrogen ions are used, and a linearly decreasing ion density profile 

has been used, with nion(0) = 3 x 10
19

 m
-3

. An n = 3 dominated HAE mode was 

selected with a frequency of 148 kHz. The associated continuum gaps and radial 

eigenmode structure are displayed in Figure 10. The corresponding eigenmode 

structure projected onto an outer flux surface is shown in Figure 11. 

 

  

Figure 10 – (a) n = 1 mode family TJ-II continuum gap structure, (b) HAE 148 kHz 

eigenmode from the lowest frequency gap. 

 



 

Figure 11 – LHD HAE eigenmode structure projected onto an outer flux surface. 

Growth rates vs. time and vfast/vA are shown in Figure 12 for a beam distribution 

function based on  the above HAE eigenmode. 

 

(C) W7-AS 

W7-AS is a five field period helical system with aspect ratio R0/a = 11.7. An 

equilibrium has been selected with R0 = 2 meters, <B> = 2.5 Tesla, i(0) = 0.36, 

i(edge) = 0.34, Hydrogen ions are used, and a parabolic ion density profile with nion(0) 

= 6 x 10
19

 m
-3

. An m,n = 3,1 dominated mode with a global radial structure and a 

frequency of 32 kHz was found which is similar to the mode observed in Ref. 1. The 

associated continuum gaps and radial eigenmode structure are displayed in Figure 13. 

The corresponding eigenmode structure projected onto an outer flux surface is shown 

in Figure 14. 

 

 

Figure 12 – (a) instantaneous growth rates for TJ-II HAE eigenmode driven by a beam 

distribution, (b) Variation of time averaged TJ-II HAE growth rates with vfast/vA."



 

 

 

Figure 13 – (a) n = 1 mode family W7-AS continuum gap structure, (b) 32 kHz eigenmode 

below miminum of lowest n = 1 continuum. 

 

"

Figure 14 – W7-AS eigenmode structure projected onto an outer flux surface. 

Growth rates vs. time and vfast/vA are shown in Figure 15 for a beam distribution 

function based on the above eigenmode. Due to the lower frequency of this 

eigenmode some of the instantaneous growth rates take a longer time to reach steady 

state (the wave period in this case was 3.1 x 10
-5

 second) than in the previous cases. 

As shown in Figure 15, due to the lack of mode coupling in this case, the growth rate 

shows a more rapid variation with vfast/vA than for the other configurations. The 

indicated range of unstable vfast/vA’s is consistent with the parameter range where an 

unstable mode was reported in the experiment.
1
 



"

  

Figure 15 – (a) instantaneous growth rates for W7-AS eigenmode driven by a beam 

distribution, (b) Variation of time averaged W7-AS growth rates vs. vfast/vA. 

 

Conclusions 

An Alfvén wave-particle energy transfer model has been developed for addressing the 

linear stability properties of tokamaks and stellarators, including finite orbit width 

(FOW) effects. This is based on a !f particle technique that incorporates Landau 

resonant effects in the time domain by following particle weight evolution equations 

along the unperturbed particle orbits. Good agreement has been obtained with several 

other independent codes on a tokamak benchmark case. Applications to stellarators 

have indicated growth rates that become positive (unstable) in the threshold ranges of 

vfast/vA = 0.25 to 0.4 where coupling to Alfvén modes is expected. Also, when growth 

rates have been compared between beam and isotropic fast ion distribution functions, 

the beam models have been significantly more unstable, consistent with increased 

FOW effects from the trapped populations or due to the fact that the trapped particles 

are not in resonance for as large a fraction of their orbits as the passing particles. 

Applications of this model were given for three different stellarators (LHD, TJ-II, 

W7-AS). It should be applicable to a wide range of stellarator configurations as well 

as for tokamaks with symmetry-breaking effects. 



Appendix A 

The following two figures show the rotational transform profiles and fast ion density 

profiles that were used for the tokamak and stellarator examples. 
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