### Neoclassical toroidal viscosity at low electric field in DIII-D

A.J. Cole, C.C. Hegna, J.D. Callen University of Wisconsin, Madison, WI
W. Solomon (PPPL),
A.M. Garofalo,
H. Reimerdes (Columbia),
DIII-D Team General Atomics, San Diego, CA

ISHW 2009 PPPL, Princeton, NJ

Monday, October 12, 2009







## Breaking toroidal symmetry induces nonambipolar particle fluxes and neoclassical toroidal flow damping

•General form of banana-drift branch of solutions

$$Z_i e \Gamma_i^{na} = -M_i n_i \langle R^2 | v_{\parallel} \delta B_{3D}^2 T_i \left( \frac{p_i'}{Z_i e p_i} + \frac{\phi'}{T_i} + \frac{c_i}{Z_i e} \frac{T'}{T_i} \right)$$

where  $'=d/d\chi$  (poloidal flux)

•Flux-friction relation gives the equivalent toroidal viscosity

$$Z_i e \Gamma_i^{na} = \langle \vec{e}_{\zeta} \cdot \vec{\nabla} \cdot \Pi_{\parallel}$$

 Infinitesimal neoclassical toroidal viscosity [NTV] torque element is

$$dT_{NTV} = -dV \langle \vec{e_{\zeta}} \cdot \vec{\nabla} \cdot \Pi_{\parallel}$$



C01 Cole 2

Trapped Particle NTV





### Radial force balance allows thermodynamic forces to be replaced by plasma flow in flux surface

$$dT_{NTV} = -Z_{i}e \Gamma_{i}^{na} dV = dM_{i} \langle R^{2} v_{||} \delta B_{3D}^{2} T_{i} \left( \frac{p_{i}'}{Z_{i}e p_{i}} + \frac{\phi'}{T_{i}} + \frac{c_{i}}{Z_{i}e} \frac{T'}{T_{i}} \right)$$
where '=d/d x (poloidal flux)  
Radial force balance:  $\frac{p_{i}'}{Z_{i}e p_{i}} + \frac{\phi'}{T_{i}} = \frac{q \vec{V}_{i} \cdot \vec{\nabla} \theta - \vec{V}_{i} \cdot \vec{\nabla} \zeta}{T_{i}}$ 

$$dT_{NTV} = -dM_{i} v_{||} \delta B_{3D}^{2} \left( \langle R^{2} \Omega - \langle R^{2} \Omega_{NTV} \rangle \right)$$

$$\Omega = \vec{V}_{i} \cdot \vec{\nabla} \zeta \qquad q \vec{V}_{i} \cdot \vec{\nabla} \theta = \frac{c_{p}}{Z_{i}e} \frac{d T_{i}}{d \chi} \qquad \Omega_{NTV} = \frac{c_{p} + c_{i}}{Z_{i}e} \frac{d T_{i}}{d \chi}$$

toroidal rotation rate

poloidal rotation rate

NTV offset rotation rate

Recall when  $\delta B_{\rm 3D} \ll \epsilon$  flowing damping in fast (poloidal) and slow (toroidal) directions are solved successively





#### Applying large external n=3 fields damps toroidal flow to offset value



A.M. Garofalo, et al: PRL 101, 195005 (2008); PoP 16, 056119 (2009)





### NTV variation at low radial electric field $\omega_E \rightarrow 0$

•Previous work compared data against different asymptotic NTV regimes: 1/nu, nu

•Recall that NTV torque is a function of both collisionality and radial electric field

$$dT_{NTV} = -dM_{i} v_{\parallel} \delta B_{3D}^{2} \left( \langle R^{2} \Omega - \langle R^{2} \Omega_{NTV} \rangle \right)$$
$$v_{\parallel} = v_{\parallel} (E_{r}, v_{i})$$

•Present focus: investigate large variation in damping rate at low electric field --where superbanana drift orbits have largest radial excursions







### Low collisionality trapped-particle NTV regimes in collisionality---radial electric field space (cartoon)







# Familiar nonambipolar flux picture is plotted along collisionality axis at finite, fixed radial electric field







### Radial force balance maps electric field to toroidal rotation rate

•Radial force balance: 
$$\frac{p_i'}{Z_i e p_i} + \frac{\phi'}{T_i} = \frac{q \vec{V}_i \cdot \vec{\nabla} \theta - \vec{V}_i \cdot \vec{\nabla} \zeta}{T_i}$$
  
•This can be rewritten as 
$$\boldsymbol{\omega}_E = \boldsymbol{\Omega}_0 - \boldsymbol{\Omega}$$
  
•The electric precessional drift is 
$$\boldsymbol{\omega}_E = \frac{d \phi}{d \chi}$$

•Radial electric field goes to zero as 
$$\Omega \to \Omega_0 = \frac{c_p - 1}{Z_i e} \frac{dT_i}{dX} - \frac{T_i}{Z_i e n} \frac{dn}{dX}$$

•Recall 
$$C_p$$
 comes from  $q \vec{V}_i \cdot \vec{\nabla} \theta = \frac{c_p}{Z_i e} \frac{d T_i}{d X}$ 





### Low collisionality trapped-particle NTV regimes in collisionality---toroidal rotation rate space (cartoon)



## Varying toroidal rotation at fixed collisionality will cause a transition in NTV regimes







# Construct ion-root cylindrical model using Padè approximation for experimental validation in DIII-D

$$dT_{NTV}[Nm] = -2 n_i e T_i [eV] dV \,\delta B^2 K \left(\Omega - \Omega_{NTV}\right)$$
$$K \equiv \frac{0.21 \sqrt{n \nu_i}}{\left(\left|\Omega - \Omega_0\right|\right)^{3/2} + .30 \sqrt{\nu_i / |n \epsilon|} |\omega_{\nabla B}| + .04 \left(\nu_i / |n \epsilon|\right)^{3/2}}$$

•Approximate  $d/dX \simeq d/(RB_{\theta}dr)$ 

$$\omega_E \simeq \frac{E_r}{R B_{\theta}} \qquad \Omega_0 \simeq \frac{T_i}{Z_i e R B_{\theta}} \left( \frac{1 - c_p}{L_T} + \frac{1}{L_n} \right)$$

•Magnetic drift for thermal super-bananas and averaged NTV offset are

$$\omega_{\nabla B} \simeq \frac{T_i}{Z_j e R B_{\theta}} \frac{d \epsilon}{d r} \qquad \qquad \Omega_{NTV} \simeq \frac{c_p + .91}{Z_j e R B_{\theta}} \frac{d T_i}{d r}$$





### Recovering the $\sqrt{\nu}$ regime



•Magnetic drift for thermal super-bananas and averaged NTV offset are

$$\omega_{\nabla B} \simeq \frac{T_i}{Z_j e R B_{\theta}} \frac{d \epsilon}{d r} \qquad \qquad \Omega_{NTV} \simeq \frac{c_p + .91}{Z_j e R B_{\theta}} \frac{d T_i}{d r}$$
C01 Cole 12



### Recovering the 1/v regime

$$dT_{NTV}[Nm] = -2 n_i e T_i [eV] dV \,\delta B^2 K \left(\Omega - \Omega_{NTV}\right)$$
$$K \equiv \frac{0.21 \sqrt{n \nu_i}}{\left(\left|\Omega - \Omega_0\right|\right)^{3/2} + .30 \sqrt{\nu_i / |n \epsilon|} \omega_{\nabla B} |+ .0^2 \left(\nu_i / |n \epsilon|\right)^{3/2}}$$

•Magnetic drift for thermal super-bananas and averaged NTV offset are

$$\omega_{\nabla B} \simeq \frac{T_i}{Z_j e R B_{\theta}} \frac{d \epsilon}{d r} \qquad \qquad \Omega_{NTV} \simeq \frac{c_p + .91}{Z_j e R B_{\theta}} \frac{d T_i}{d r}$$
C01 Cole 13



#### Recovering the superbanana plateau regime

$$dT_{NTV}[Nm] = -2 n_i e T_i [eV] dV \,\delta B^2 K \left(\Omega - \Omega_{NTV}\right)$$
$$K \equiv \frac{0.21 \sqrt{n \nu_i}}{\left(\left|\Omega - \Omega_0\right|\right)^{3/2} + .30 \sqrt{\nu_i / |n \epsilon|} |\omega_{\nabla B}| + .04 \left(\nu_i / |n \epsilon|\right)^{3/2}}$$

•Magnetic drift for thermal super-bananas and averaged NTV offset are

$$\omega_{\nabla B} \simeq \frac{T_i}{Z_j e R B_{\theta}} \frac{d \epsilon}{d r} \qquad \qquad \Omega_{NTV} \simeq \frac{c_p + .91}{Z_j e R B_{\theta}} \frac{d T_i}{d r}$$
FUNCTION FACILITY CO1 Cole 14



#### Varying toroidal rotation at fixed collisionality, torque model exhibits "peak" near $E_{r} = 0$

Patched kernel exhibits "Lorentzian-like" behavior

$$K = \frac{0.211 \sqrt{n \nu_i}}{(|\Omega - \Omega_0|)^{3/2} + (W/2)^{3/2}}$$

[A.U.]

$$\left(\frac{W}{2}\right)^{3/2} = .30\sqrt{\nu_i/|n\epsilon|} |\omega_{\nabla B}| + .04(\nu_i/|n\epsilon|)^{3/2}$$

•Zero radial electric field occurs when toroidal rotation rate is near

$$\Omega_0 = \frac{T_i}{Z_i e R B_\theta} \left( \frac{1 - c_p}{L_T} + \frac{1}{L_n} \right)$$

C01 Cole 15

•Recall  $C_p$  comes from

$$q \vec{V}_i \cdot \vec{\nabla} \theta = \frac{c_p}{Z_i e} \frac{d T_i}{d X}$$



NTV torque on single surface 1.2 1.0 0.8 W0.6 ALN 0.4  $\cdot \cdot \Omega_0$  $\Omega_{NTV}$ 0.2 0.0 -30 -20 -10 10 20 30 40 -40 0  $\Omega$  [krad/s], + is CO-Ip

### Varying toroidal rotation at fixed collisionality, torque model exhibits "peak" near $E_r=0$



### Near balanced beam injection gives DIII-D ability to scan toroidal rotation value and observe peak

- •Use NBI feedback to measure required beam torque with and without n=3 fields applied by I-coils.
- •Repeat for several rotation values







## Experimental traces show clear indication of n=3 applied neoclassical toroidal viscosity

•Establish desired initial rotation rate

$$T_{NBI} + S = 0$$

- -Maintain rotation with feedback on T22 ChERS channel very near  $\,\rho\!\sim\!0.8$
- •Rapidly switch-on I-Coils to apply n=3 fields
- •Measure change in NBI torque before and after I-coil switch-on to determine total torque applied by I-coils

$$\Delta T_{NBI} = -T_{NTV}$$

•Repeat for different values of toroidal rotation rate









### Radial integration of cylindrical torque model broadens peak, for a decent fit to data

$$-T_{NTV}[Nm] = \int dV 2 n_i e T_i[eV] \delta B^2 K (\Omega - \Omega_{NTV})$$

Only two fitting parameters

- $\delta B/B_0$  in plasma
- axisymmetric poloidal rotation value C n

$$q \vec{V}_i \cdot \vec{\nabla} \theta = \frac{c_p}{Z_i e} \frac{d T_i}{d X}$$





### Overall torque height and shape sensitive to radial $\delta B/B_0$ profile chosen







#### Location of NTV torque peak highly sensitive to axisymmetric poloidal rotation value cp







#### Summary and conclusions

- •Balanced NBI and I-coil fields allow DIII-D to access 3-D physics of low radial electric field neoclassical toroidal viscous damping
- •DIII-D observed peak in the neoclassical toroidal viscous force as a function of toroidal rotation, predicted by theory
- •Peak is highly sensitive to neoclassical poloidal rotation value find best "fit" value of  $c_p \simeq 1.42$ , which is in the ballpark
- •This is tokamak version of stellarator observation that with with no radial electric field, non-axisymmetry-induced superbanana transport becomes very large



