Modeling and Measurement of Toroidal Currents in the HSX Stellarator

J.C. Schmitt, J.N. Talmadge, J.Lore 17th International Stellarator/Heliotron Workshop 12-16 October, 2009 Princeton, New Jersey

Toroidal current is bootstrap-driven

- Electron Cyclotron Resonance Heating
 - 1st Harmonic Ordinary-mode
 - Perpendicular launch
 - Little to no current drive seen during 1 Tesla campaign
- > No ohmic drive
- Bootstrap current reverses with B-field direction
- ➢ Bootstrap current induces toroidal current with long decay times: $τ_{η_{||}/μ_0} ≥ τ_{EXP}$

Equilibrium Currents with Quasi-Helical Symmetry

- Pfirsch-Schlüter current rotates with the |B| contours
- Bootstrap current is in the opposite direction and reduced compared to a tokamak
- The evolving current profile is modeled with a diffusion equation using a 3d susceptance matrix
- V3FIT calculates the expected signal response for an array of magnetic diagnostics. Next step includes using V3FIT for equilibrium reconstruction of HSX plasmas.

Bootstrap current depends on E_r

- Te, Ne from Thomson Scattering.
- Ti from ChERS. Zeff ≈ 1 from Bremsstrahlung radiation (ChERS optics).
- PENTA¹ calculates the fluxes. E_r is determined by ambipolarity.
- The electron-root <u>reverses</u> the direction of the bootstrap current ¹ D.A. Spong, Phys. Plasmas 12, 056114 (2005).

Toroidal current evolves during shot

The measured net current is between the predicted limits of the ion- and e-roots.

Modeling the Evolution of the Toroidal Current

- 3d susceptance matrix links toroidal and poloidal currents and magnetic fluxes²
 - $S_{12} = S_{21} = 0 \text{ for Tokamaks}$ $- S_{11} \approx S_{12} \approx S_{21} \text{ for HSX}$ $\mu_0 \begin{pmatrix} I \\ F \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} \Psi' \\ \Phi' \end{pmatrix}$
- 1-D diffusion equation for rotational transform

$$s = \Phi/\Phi_{a} \qquad \frac{dt}{dt} = \frac{1}{\Phi_{a}^{2}} \frac{d}{ds} \left(\eta_{\parallel} V' \left[\frac{\langle B^{2} \rangle}{\mu_{0}} \frac{d}{ds} (S_{11}t + S_{12}) + p' (S_{11}t + S_{12}) - \langle J_{NI} \cdot B \rangle \right] \right)$$

• Boundary conditions Finite current density on axis: $\frac{dt}{ds}\Big|_{s=0} = 0$

Any non-inductive source

iota @ LCFS set by measurement: $t_{s=1} = \left(\frac{\mu_0 I}{S_{11} \Phi'} - \frac{S_{12}}{S_{11}}\right)_{s=1}$

² P. I. Strand and W. A. Houlberg, Phys. Plasmas 8, 2782 (2001).

V3FIT³ is Used to Calculate the Magnetic Diagnostics Signals

- Diagnostic set includes two Rogowski coils, two flux loops and 32 dB/dt sensors
- Thanks to James Hanson and Steve Knowlton for the assistance in using V3FIT
- See J.Hanson, I14, Tuesday 11:15, "Three-dimensional Equilibrium Reconstruction: the V3FIT Code."

- The plasma pressure profile is calculated and used in V3FIT to find the magnetic response due to the Pfirsch-Schlüter current.
- The net toroidal current is set to 0.

A 'dipole-like' response is predicted for the case of no net toroidal current .

Bootstrap Current Contributes Little to B_r Early in Shot

- The toroidal current profile is simulated in time and the diagnostic response is predicted with V3FIT
- A small net toroidal current (30 A) contributes to the B_{θ} component

Confirmation of the Helical Rotation of the Pfirsch-Schlüter Current

- The experimental signals from t_{ave}=(3ms-7ms) agree well with theory in terms of the sign and phase.
- Good agreement in magnitude. Reconstruction with V3FIT may resolve the differences.

Later in Time, the Largest Signals are from Bootstrap Current

- Simulated profiles at 15ms, 45ms and $^\infty\,$ are used in V3FIT
- B_θ has large unidirectional contribution from <J·B>
- B_r is dominated by the m=2 structure of the vacuum vessel

Measured B_{θ} shows increasing offset due to bootstrap current evolution

- Measurement evolves slightly faster than simulated values
- Possible sources of error: Zeff, initial plasma profiles, neoclassical calculation of bootstrap current

Toroidal Currents with Quasi-Helical Symmetry

- The direction of the bootstrap current is reversed and reduced by ~1/3 compared to an equivalent tokamak (same iota, R_{major}, r_{minor}). This results in a reduction in rotational transform.
- The evolving current profile is modeled with a diffusion equation using a 3d susceptance matrix
- Expected magnetic diagnostic signal are calculated with V3FIT
- The Pfirsch-Schlüter current rotates with |B| contours and is reduced by ~1/3 compared to a tokamak, demonstrating the lack of toroidal curvature.
- Future work includes using V3FIT for equilibrium reconstruction