Enhancement of Residual Zonal Flows in Helical Systems with Radial Electric Fields

H. Sugama

National Institute for Fusion Science, Graduate University of Advanced Studies Toki 509-5292, Japan

in collaboration with T.-H. Watanabe

OUTLINE

- Introduction
- Zonal Flows and ITG Turbulence in Helical Systems with $E_r = 0$
- Effects of Equilibrium Electric Field *E_r* on Zonal Flows in Helical Systems
- Summary

For low collisionality, better confinement is observed in the inward-shifted magnetic configurations, where lower neoclassical ripple transport but more unfavorable magnetic curvature driving pressure-gradient instabilities are anticipated.

Anomalous transport is also improved in the inward shifted configuration.

Inward-shifted

Standard

Outward-shifted

Scenario:

Neoclassical optimization contributes to reduction of anomalous transport by enhancing the zonal-flow level.

Collisionless Time Evolution of Zonal Flows in Helical Systems

[Sugama & Watanabe, PRL (2005), Phys.Plasmas (2006)]

Response of the zonal-flow potential to a given initial potential

 $\left\langle \phi_k(t) \right\rangle = K(t) \left\langle \phi_k(0) \right\rangle$

<u>**Response function</u>** = GAM component + Residual component</u>

$$K(t) = K_{GAM}(t) [1 - K_L(0)] + K_L(t)$$

K(t=0) = 1 $K(t) \rightarrow K_L(t), K_{GAM}(t) \rightarrow 0 \text{ as } t \rightarrow +\infty$

 $B = B_0 \left[1 - \varepsilon_t \cos \theta - \varepsilon_h \cos \left(L\theta - M\zeta \right) \right]$

 $k \rho_i < 1$

GAM response function $K_{GAM}(t) = \cos(\omega_G)\exp(-|\gamma|t)$

Long-time response function

$$K_{L}(t) = \frac{1 - (2/\pi)^{1/2} \langle (2\varepsilon_{H})^{1/2} \{ 1 - g_{i1}(t,\theta) \} \rangle}{1 + G + E(t) / \left(n_{0} \langle k_{\perp}^{2} \rho_{ti}^{2} \rangle \right)}$$

E(t) represents effects of shielding of potential due to helical-ripple-trapped particles.

$$\begin{split} E(t) &= \frac{2}{\pi} n_0 \bigg[\left\langle (2\varepsilon_H)^{1/2} \{1 - g_{i1}(t,\theta)\} \right\rangle - \frac{3}{2} \left\langle k_\perp^2 \rho_{ii}^2 \right\rangle \left\langle (2\varepsilon_H)^{1/2} \{1 - g_{i1}(t,\theta)\} \right\rangle \\ &+ \frac{T_i}{T_e} \left\langle (2\varepsilon_H)^{1/2} \{1 - g_{e1}(t,\theta)\} \right\rangle \bigg] \end{split}$$

out by the Earth Simulator (JAMSTEC).

EARTH SIMULATO Potential contours obtained from six copies of flux tube

Effects of Equilibrium Electric Field E_r on Zonal Flows in Helical Systems

In helical systems

- E_r is given from ambipolar condition of radial particle fluxes.
- E_r reduces neoclassical ripple transport.

How does E_r influence zonal flows and anomalous transport?

Effects of E_r on gyrokinetic equation and zonal flows

In helical systems, $\mathbf{\alpha}$ -dependence appears in $\mathbf{k}_r \cdot \mathbf{v}_d$ and $\mu(\hat{\mathbf{b}} \cdot \nabla \Omega)$.

Therefore, even if the zonal-flow potential ϕ is independent of α , δf comes to depend on α .

Thus, ω_E influences δf and accordingly ϕ through quasineutrality condition.

Effects of Equilibrium E_r on Zonal-Flow Response

Equilibrium E_r field generates a ExB component to the velocity.

Poloidal ExB rotation of helicallytrapped particles with reduced radial displacements Δ_E will decrease the shielding of zonalflow potential and increase its response.

> Mynick & Boozer, PoP(2007) Action-Angle Formulation

Classification of particle orbits in the presence of E_r

Solution of gyrokinetic equation to describe long-time evolution of zonal flows [Sugama & Watanabe, PoP(2009)]

Long-time zonal-flow response to the initial condition and turbulence source

For radial wavenumbers $k_r \rho_{ti} < 1$ (ITG turbulence) and $k_r \Delta_E < 1$, the zonal-flow potential is derived from the quasineutrality condition as [Sugama & Watanabe, PoP(2009)]

$$\frac{e}{T_{i}}\langle\phi_{k}(t)\rangle = \frac{\left\langle n_{0}^{-1}\int d^{3}v \left[1+ik_{r}\left(\Delta_{ir}-\left\langle\Delta_{ir}\right\rangle_{\text{orbit}}\right)\right] \left[\delta f_{ik}^{(g)}(0)+F_{M}\int_{0}^{t}S_{ik}(t)dt\right]\right\rangle}{\left(k_{r}\rho_{ti}\right)^{2} \left[1+G_{p}+G_{t}+M_{p}^{-2}(G_{ht}+G_{h})(1+T_{e}/T_{i})\right]}$$

Geometrical factors G's represents shielding effects of neoclassical polarization due to particles motions in different orbits.

 $G \propto (\text{population})$ $G_p: \text{passing}$ $G_{ht}: \text{helicallly-trapped (unclosed orbit)}$ $\times (\Delta_r / \rho)^2$ $G_t: \text{toroidally-trapped}$ $G_h: \text{toroidally-trapped (closed orbit)}$

Zonal-flow generation can be enhanced when G_{ht} and G_h decreases with neoclassical optimization (which reduces radial drift velocity V_{dr}) and when poloidal Mach number $M_p = \frac{(cE_r/B_0)/(rv_{ti}/Rq)}{increases}$ increases with increasing E_r and using heavier ions. Assume the initial distribution to have Maxwellian dependence $\delta f_{ik}^{(g)}(0) = [\delta n_k^{(g)}(0)/n_0]F_M$ Then, we obtain $\delta n_k^{(g)}(0)/n_0 = (k_r \rho_{ti})^2 e \phi(0)/T_i$

$$\langle \phi_k(t) \rangle = \frac{\langle \phi_k(0) \rangle}{1 + G_p + G_t + M_p^{-2} (G_{ht} + G_h) (1 + T_e / T_i)}$$

(no turbulence source)

For the single-helicity configuration

$$B = B_0 [1 - \varepsilon_t \cos \theta - \varepsilon_h \cos(L\theta - M\varsigma)] \quad (\varepsilon_h : \text{independent of } \theta)$$

No transitions occur. $G_{ht} = 0, \quad G_h = (15\pi/4)q^2(2\varepsilon_h)^{1/2}$

$$\langle \phi_k(t) \rangle = \frac{\langle \phi_k(0) \rangle}{1 + G_p + G_t + (15\pi/4)M_p^{-2}q^2(2\varepsilon_h)^{1/2}(1 + T_e/T_i)}$$

This corresponds to the case considered by previous works.

Mynick & Boozer, PoP(2007) Sugama, Watanabe & Ferrando, PFR(2008) GKV code is extended from the flux tube to the poloidally global model for studying effects of E_r on zonal flows in helical systems [Watanabe, IAEA FEC 2008].

$$\alpha \equiv \theta - \zeta / q$$
 : field-line label ζ : toroidal angle

- Linear simulations for time evolution of zonal flows are done using 129 Fourier modes in the α direction,
 1, 536 grid points in the ζ direction, and
 (512, 48) grid points in the (v_{||}, μ) space for a fixed radial wavenumber k_r.
- Standard configuration model (single helicity) :

 $B = B_0 [1 - \varepsilon_t \cos \theta - \varepsilon_h \cos(L\theta - M\varsigma)], \quad \varepsilon_t = 0.1, \quad \varepsilon_h = 0.1, \quad q = 1.5, \quad L = 2, \quad M = 10$

• Inward-shifted configuration model :

Sideband helicity components $(\varepsilon_{L+1} = -0.02, \varepsilon_{L-1} = -0.08)$ are included.

Collisionless time evolution of zonal flows in helical configurations with E_r

It is clearly shown for the inward-shifted model configuration that the residual zonal-flow potential amplitude (observed after Landau damping of GAM) is enhaced by increasing E_r .

The residual zonal-flow potential as a function of $k_r \rho_{ti}$ for $M_p = 0$ and $M_p = 0.3$

Different $k_r \rho_{ti}$ dependences for $M_p = 0$ and $M_p = 0.3$ are theoretically predicted and confirmed by simulation.

Theoretical results are derived by assuming $k_r \rho_{ti} \ll 1$.

Summary

- It is verified from GKV simulation (for E_r = 0) that, in the inward-shifted (or neoclassically optimized) LHD configuration, zonal-flow generation is enhanced and the ITG turbulent thermal diffusivity is reduced.
 [Similar gyrokinetic simulation results for W7X will be reported by Dr.Xanthopoulos (I25) on Thursday in this Workshop.]
- Zonal-flow response theory is presented, in which effects of the equilibrium radial electric field E_r and transitions between toroidally- and helically-trapped particles are taken into account.
- The predicted enhancement of the zonal-flow response due to E_r is confirmed by the linear poloidally-global gyrokinetic simulation.
- The E_r effects appear through the poloidal Mach number M_p . For the same magnitude of E_r , higher zonal-flow response is obtained by using ions with heavier mass (favorable deviation from gyro-Bohm scaling).
- Nonlinear poloidally-global GKV simulation to study E_r effects remains as a future task.