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e Self-organized helical equilibria: experimental
evidence

e Equilibrium reconstruction:

— Perturbative approach (NCT)
— 3D approach (VMEC): issue of magnetic flux and g

o VMEC for the RFP

# Conclusions
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RFX-mod a Reversed Field Pinch experiment

Largest RFP:

Ry=2m
a=046m

Max |, = 2 MA
Max B;=0.7 T
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RFX-mod magnetic boundary: active coils

Maximum radial field
that can be produced:;

b, = 50 mT (DC)
b, = 3.5mT (100 Hz)

T ACTIVE COILS

192 independently controlled coils covering the whole
torus. Digital Controller with Cycle frequency of 2.5 kHz.

17t ISHW, 12-16 October 2009, Princeton, New Jersey, USA



CONSORZIO REX

RFP axisymmetric equilibrium profiles

e Strongly paramagnetic plasma with
B, reversal at the edge.

e Strong magnetic shear.

o Safety factor is q<1 everywhere.

3

Br Reversed

In RFX-mod equilibria
Lis always > 6
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Helical states: kinetic evidence

SXR emissivity

Density

A bean shaped thermal structure is visible in the
tomographic reconstruction of SXR emissivity.

T, gradients are associated to a dominant mode
in the spectrum of the toroidal magnetic field.

The structure can confine particles.
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Helical states: magnetic fluctuations evidence
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Helical states can survive
several times the energy
confinement time.

They are interrupted by MHD
relaxation events leading to
MH states.
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The dominant mode is the most internally resonant tearing mode.
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WE NEED A 3D EQUILIBRIUM (1/2)

A perturbative approach in toroidal geometry
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A helical equilbrium needs a helical coordinate

flux (adim.)

The SHAX state is well described in terms of a helical flux ., with m=1,n=7:

2" (0,9 ) = eyl — iy Bal+ (™ () = nf ™" () Je e

Axi-symmetric

Dominant mode
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Mapping T, on helical flux

o T, profiles are non-axisymmetric in r but notin p: T, = T,(p).

» The transport barrier is due to the presence of “almost-invariant” helical
flux surfaces.

R. Lorenzini et al., Nature Physics 5 (2009) 570-574
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Flux surfaces in RFX-mod helical equilibria

R. Lorenzini et al., Nature Physics 5 (2009) 570-574
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Flux surfaces in toroidal devices

tokamak Heliac

A. Boozer, Phys. Plasmas 5 (1998) 1647

W7-X RFX-mod in helical state
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The q profile: experimental finding

The helical equilibrium is
obtained spontaneously with
an axi-symmetric boundary, $

~—

BUT

the calculated q profile has a
particular shape, quite different
form the axisymmetric one:

q Is not monotonic.
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q profile and temperature barriers
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o Experiments with reverse shear in Tokamaks shows a transition corresponding to
the region inside the radius where q'=0 (a minimum).

¢ In RFX-mod confinement improves in the region inside the radius where q'=0 (a
maximum).
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WE NEED A 3D EQUILIBRIUM (2/2)

" F, TOROIDAL flux
"W, POLOIDAL flux
A full 3D code %)
VMEC for the RFP !
= 0.3}
Code modification thanks to S.P. Hirshman oof 22— .
From toroidal flux to poloidal flux 00 01 o.rz(m) 05 04
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VMEC Axisymmetric and Helical equilibria
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Flux surfaces
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The flux surfaces obtained both in axisymmetric and helical configurations
provide a good benchmark with present experimental observations.

17t ISHW, 12-16 October 2009, Princeton, New Jersey, USA



Magnetic field and current density profiles CONS(QORFX
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Magnetic field profiles asymmetries comcgom
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Op=0OM —> —> [l 0,=12 With respect to the
axisymmetric configuration B
has a small deviation while By

0=t Il —> —> [ 0,,=3m/2 has a large deviation.

For more detailes see the Poster by Marco Gobbin on Wednesday (P03-06).
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Flux surfaces and field strength
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VMEC free boundary

VMEC in free boundary mode to asses the issue of using RFX-mod active boundary control system for
controlling the helical equilibrium as suggested by recent studies and papers (for examples A.H.
Boozer and N. Pomphrey, Phys. Plasmas 16 (2009) 022507).
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Conclusions CONS(%()RFX

¢ In RFX-mod spontaneous helical equilibria with an axisymmetric boundary
show improved performances both in terms of energy and particle confinement.

¢ Equilibrium reconstruction requires a 3D analysis. Two aproaches were
adopted: a perturbative approach in toroidal geometry (NCT) and a full 3D
approach (VMEC modified for the RFP).

e Reconstructed equilibria allow a correct interpretation of experimental data and
a more complete description of helical states.

¢ VMEC proves to be a powerful tool and allows the use of a suite of codes:
— Equilibrium with pertubations [SIESTA].
— Stability. current and pressure [COBRA] driven modes.

— Transport. DKES and ASTRA [G. Pereversev et al., Max Planck Institut fur
Plasmaphysik, Rep. IPP 5/98 Garching, February 2002)).

¢ Collaborations are ongoing and being started on these topics.
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RFX-mod team
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RFX-mod team
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Trapped particles with ORBIT CONS(QORFX

Passing lon

Poloidal Trapping

Banana width: 0.2 cm
(800 eV)

Helical Trapping

Banana width: 0.5- 5 cm
(300 - 1200 eV)
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lon diffusion coefficient with ORBIT

MH Dy~ 10-20 ms
DI,DAX ~1'3 mZ/S
DAX
DI,SHAX~ 03'1 mZ/S
T~ 0.3-1 keV
SHAXx ne~2-4-10"° m-3

De,SHAx’“ 0.3-1 Di,SHAX

SHAX: the main contribution comes from trapped particles (poloidally + helically).
MH: the main contribution comes from chaotic transport.

In helical configurations the total fraction of trapped particles
may increase up to ~40%, to be compared with a fraction of ~30% D,/ Dy, ~ 0.07 at T,=T=800 eV
in the axisymmetric ones.
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from Connor et al, Nucl. Fus. 2004
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RFP:
electron transport barriers linked to a maximum of q

barrier location at gmax position

Tokamak:
electron transport barriers triggered by a minimum of q

barrier location at gmin position
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ITBs correspond to weak chaos comcgom
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ITBs are correlated to regions of
reduced magnetic chaos.

Barriers in RFX helical states can
be described in terms of ALMOST
INVARIANT FLUX SURFACES.

Across the larger islands the temperature flattens, and across the cantori (broken

KAM surfaces) and small islands temperature gradients are supported.
S.R. Hudson and J. Breslau, PRL 100, 095001 (2008)
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