

Self-organized helical equilibria in the RFX-mod reversed field pinch

D. Terranova¹, A.H. Boozer², M. Gobbin¹, L. Marrelli¹, S.P. Hirshman³, N. Pomphrey⁴ and the RFX-mod team

¹Consorzio RFX, Associazione Euratom-ENEA sulla fusione, Corso Stati Uniti 4, 35127 Padova (Italy) ²Dept. of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 ³ORNL Fusion Energy Division, Oak Ridge, TN 37830

⁴Princeton Plasma Physics Laboratory, Princeton, NJ

- Self-organized helical equilibria: experimental evidence
- Equilibrium reconstruction:
 - Perturbative approach (NCT)
 - 3D approach (VMEC): issue of magnetic flux and q
- VMEC for the RFP
- Conclusions

RFX-mod a Reversed Field Pinch experiment

Largest RFP:

R₀ = 2 m a = 0.46 m

Max $I_p = 2 MA$ Max $B_T = 0.7 T$

RFX-mod magnetic boundary: active coils

Maximum radial field that can be produced:

 $b_r = 50 mT (DC)$ $b_r = 3.5 mT (100 Hz)$

192 independently controlled coils covering the whole torus. Digital Controller with Cycle frequency of 2.5 kHz.

RFP axisymmetric equilibrium profiles

Helical states: kinetic evidence

A bean shaped thermal structure is visible in the tomographic reconstruction of **SXR emissivity**.

T_e gradients are associated to a dominant mode in the spectrum of the toroidal magnetic field.

The structure can **confine particles**.

Helical states: magnetic fluctuations evidence

The dominant mode is the most internally resonant tearing mode.

WE NEED A 3D EQUILIBRIUM (1/2)

A perturbative approach in toroidal geometry

A helical equilbrium needs a helical coordinate

The SHAx state is well described in terms of a helical flux χ_{mn} with *m*=1,*n*=7:

Mapping T_e on helical flux

- T_e profiles are non-axisymmetric in **r** but not in ρ : $T_e = T_e(\rho)$.
- The transport barrier is due to the presence of "almost-invariant" helical flux surfaces.

R. Lorenzini et al., Nature Physics 5 (2009) 570-574

Flux surfaces in RFX-mod helical equilibria

R. Lorenzini et al., Nature Physics 5 (2009) 570-574

Flux surfaces in toroidal devices

A. Boozer, Phys. Plasmas 5 (1998) 1647

RFX-mod in helical state

The helical equilibrium is obtained *spontaneously with an axi-symmetric boundary*,

BUT

the *calculated q profile* has a *particular shape*, quite different form the axisymmetric one:

q is not monotonic.

q profile and temperature barriers

RFP and Tokamaks

- Experiments with *reverse shear* in Tokamaks shows a transition corresponding to the region inside the radius where q'=0 (*a minimum*).
- In RFX-mod confinement improves in the region inside the radius where q'=0 (a maximum).

WE NEED A 3D EQUILIBRIUM (2/2)

A full 3D code *VMEC for the RFP*

Code modification thanks to S.P. Hirshman

From *toroidal* flux to *poloidal* flux

VMEC Axisymmetric and Helical equilibria

Flux surfaces

The flux surfaces obtained both in axisymmetric and helical configurations provide a good benchmark with present experimental observations.

Magnetic field profiles asymmetries

For more detailes see the Poster by Marco Gobbin on Wednesday (P03-06).

Flux surfaces and field strength

VMEC free boundary

VMEC in free boundary mode to asses the issue of using RFX-mod active boundary control system for controlling the helical equilibrium as suggested by recent studies and papers (for examples A.H. Boozer and N. Pomphrey, Phys. Plasmas **16** (2009) 022507).

Conclusions

- In RFX-mod spontaneous helical equilibria with an axisymmetric boundary show improved performances both in terms of energy and particle confinement.
- Equilibrium reconstruction requires a 3D analysis. Two aproaches were adopted: a perturbative approach in toroidal geometry (NCT) and a full 3D approach (VMEC modified for the RFP).
- Reconstructed equilibria allow a correct interpretation of experimental data and a more complete description of helical states.
- VMEC proves to be a powerful tool and allows the use of a suite of codes:
 - Equilibrium with *pertubations* [SIESTA].
 - **Stability**: current and pressure [COBRA] driven modes.
 - *Transport*: DKES and ASTRA [G. Pereversev *et al.*, Max Planck Institut für Plasmaphysik, Rep. IPP 5/98 Garching, February 2002]).
- Collaborations are ongoing and being started on these topics.

RFX-mod team

P. Martin⁵, L. Apolloni⁵, M. E. Puiatti⁵, J. Adamek⁶, M. Agostini⁵, A. Alfier⁵, S. V. Annibaldi⁷, V. Antoni⁵, F. Auriemma⁵, O. Barana⁵, M. Baruzzo⁵, P. Bettini⁵, T. Bolzonella⁵, D. Bonfiglio⁵, F. Bonomo⁵,
A.H. Boozer¹⁵, M. Brombin⁵, J. Brotankova⁶, A. Buffa⁵, P. Buratti⁷, A. Canton⁵, S. Cappello⁵, L. Carraro⁵,
R. Cavazzana⁵, M. Cavinato⁵, B. E. Chapman⁸, G. Chitarin⁵, S. Dal Bello⁵, A. De Lorenzi⁵, G. De Masi⁵,
D.F. Escande^{5,9}, A. Fassina⁵, A. Ferro⁵, P. Franz⁵, E. Gaio⁵, E. Gazza⁶, L. Giudicotti⁵, F. Gnesotto⁵,
M. Gobbin⁵, L. Grando⁵, L. Guazzotto⁵, S.C. Guo⁵, S.P. Hirschman¹⁶, V. Igochine¹⁰, P. Innocente⁵,
Y.Q. Liu¹¹, R. Lorenzini⁵, A. Luchetta⁵, G. Manduchi⁵, G. Marchiori⁵, D. Marcuzzi⁵, L. Marrelli⁵, S. Martini⁵, E. Martines⁵, K. McCollam⁸, F. Milani⁵, M. Moresco⁵, L. Novello⁵, S. Ortolani⁵, R. Paccagnella⁵,
R. Pasqualotto⁵, S. Peruzzo⁵, R. Piovan⁵, P. Piovesan⁵, L. Piron⁵, A. Pizzimenti⁵, N. Pomaro⁵,
N. Pomphrey¹⁴, I. Predebon⁵, J.A. Reusch⁸, G. Rostagni⁵, G. Rubinacci¹², J.S. Sarff⁸, F. Sattin⁵,
P. Scarin⁵, G. Serianni⁵, P. Sonato⁵, E. Spada⁵, A. Soppelsa⁵, S. Spagnolo⁵, M. Spolaore⁵, G. Spizzo⁵,
C. Taliercio⁵, D. Terranova⁵, V. Toigo⁵, M. Valisa⁵, N. Vianello⁵, F. Villone¹³, R.B. White¹⁴, D. Yadikin¹⁰,
P. Zaccaria⁵, A. Zamengo⁵, P. Zanca⁵, B. Zaniol⁵, L. Zanotto⁵, E. Zilli⁵, H. Zohm¹⁰ and M. Zuin⁵

5 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35137 Padova, Italy 6 Institute of Plasma Physics, Association EURATOM-IPP.CR, Prague 18200, Czech Republic 7 Space and Plasma Physics, EE KTH, SE-10044 Stockholm, Sweden 8 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 9 UMR 6633 CNRS-Université de Provence, Marseille, France

10 Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany

11 EURATOM-UKAEA Fusion Ass., Culham Science Centre, Abingdon OX14 3DB, UK 12 Ass. Euratom/ENEA/CREATE, DIEL, Università di Napoli Federico II, Napoli 80125, Italy 13 Ass. Euratom/ENEA/CREATE, DAEIMI, Università di Cassino, Cassino 03043, Italy 14 Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA 15 Dept. of Applied Physics and Mathematics, Columbia University, New York, NY 10027, USA 16 ORNL Fusion Energy Division, Oak Ridge, TN 37830, USA

RFX-mod team

VMEC free boundary

Trapped particles with ORBIT

Ion diffusion coefficient with ORBIT

SHAx: the main contribution comes from *trapped particles* (poloidally + helically). MH: the main contribution comes from *chaotic transport*.

In helical configurations the *total fraction* of trapped particles may increase up to \sim 40%, to be compared with a fraction of \sim 30% in the **axisymmetric** ones.

 $D_{pas} / D_{trap} \sim 0.01$ at $T_e = T_i = 800 \text{ eV}$

RFP:

electron transport barriers linked to a maximum of q barrier location at qmax position

Tokamak:

electron transport barriers triggered by a minimum of q barrier location at qmin position

ITBs correspond to weak chaos

ITBs are correlated to regions of reduced magnetic chaos.

Barriers in RFX helical states can be described in terms of ALMOST INVARIANT FLUX SURFACES.

Across the larger islands the temperature flattens, and across the cantori (broken KAM surfaces) and small islands temperature gradients are supported.

S.R. Hudson and J. Breslau, PRL 100, 095001 (2008)