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Outline

• Motivation on over-dense plasma generation

• Overview WEGA 

• Setup of 28GHz ECRH system

• Results from OXB mode heating

• Summary and outlook

Overview of actual WEGA results will be presented on poster P-D02

during workshop’s poster session from Monday till Wednesday.



Motivation

Why OXB Mode Heating ?

• Electromagnetic waves used for resonant electron or ion cyclotron heating 

can not penetrate the plasma above associated cut-off density

➽ problem for high-density operation

• Electrostatic Bernstein waves (EBW)

- no density limit but need a medium for propagating

- damped on electrons at fundamental or harmonic Doppler-shifted 

electron cyclotron resonance

• Plasma is optically thick for EBWs even at low temperature (<10 eV)

• Interesting physics:

- Wave field physics

- Generation and confinement of fast electrons

- Current drive in overdense plasmas
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The OXB-mode Conversion Process
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Requirements

• O-wave launched with θopt in respect to the magnetic field vector

- correct polarisation

- angular window width  ~ 1/k0Ln (inverse normalized gradient length)

• Density ne above cut-off density ne,cut

• Existence of UHR (ω > ωc)

Example:  

Ray tracing calculation of slow

X-mode conversion process 

at W7-AS θopt
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WEGA = Wendelstein Experiment in Greifswald zur Ausbildung (for education)

• Hybrid tokamak/stellarator experiment in Grenoble/France in the 1970s and ´80s 

for development of LH heating

• Installation at IPP Greifswald in 2000/2001 

as classical stellarator

• October 2009: about 33000 pulses

with typical duration of 10 - 60 s

• 0.5T operation for 30 s possible

• Up to ~100 pulses / day

Overview WEGA
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Setup and Magnetic Properties

Vessel

• Two half-tori with R = 0.72m, r = 0.19m 

• 100 ports ( ≤ 92mm)

Magnetic field coils

• 40 toroidal field coils: Bmax (cw) = 0.34T 

and 0.9T for pulsed operation

• Helical field coils: l = 2, m = 5

• Rotational transform  = 0.1 - 1

amax =11cm, Vmax =0.15m3 (limiter configuration)

a <= 5 cm for high iota (separatrix configuration)

• Vertical field and error field compensation coils

Plasma heating

• 20 + 6 kW magnetrons @ 2.45 GHz (cw) 

• 10kW gyrotron @ 28GHz (cw)

• 5-arm transformer with 0.44Vs

Working gases

• Helium, Argon, Hydrogen



Relevant 28GHz Diagnostics

• Interferometer (80 GHz, single channel)

• Sniffer probe (28GHz)

• 12-channel bolometer array

• Radiometer with 12 channels (23 – 40GHz) 

for ECE, EBE and Reflectometry

• Spectrum analyzer up to 40GHz

• Soft X-ray (PHA)

• Langmuir probes
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Bolometer array

Sniffer probe

ECE antenna system

Low field side

High field side



Microwave Diagnostic
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Temperature measurements 

• ECE: problem ➽ over-dense and optically thin

• EBE: accessible via BXO conversion, optically thick 

even at low temperature, no density limit, 

oblique alignment of antenna necessary

Oblique alignment

of EBE antenna (55°)

EBE horn

HFS-ECE horn



Setup of 28GHz ECRH system
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ECRH Components

Installation of a 28GHz ECRH for B0=0.5T operation in cooperation with CIEMAT/Spain and IPF Stuttgart

4.3 m

Gyrotron 10kW cw

(20 kHz modulation) Transmission line
Mirror system inside vessel 

for X2 and OXB mode

28 GHz Gyrotron 

(CPI VGA-8028)

0.1 10 kW CW

15 kW 10s

20 kW 1s

80 dB

Directional

Coupler

TE02-TE01

ConverterDC Break 

& Mode 

Filter
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HE11 

Waveguide
HE11

Uptaper
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ECRH Components: In-Vessel Mirrors

• Switching between X2 and OXB mode heating possible by exchanging A-port mirror

• Quasi-optical Gaussian beam in equatorial plane at vertical elongated symmetry plane

(steepest gradient expected) under angle of 55° to magnetic field line

• Steerable OXB-mirror for finding optimum OXB conversion 

(up to now venting of vessel necessary)

flux surfaces

Gaussian beam

port

toroidal coil

elliptical focus

OXB-Mirror

Discharges of B0=0.5 T up to 30s at <= 0.4

OXBA-portX2
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OXB – Ray Propagation

Ray-tracing calculations by J. Preinhaelter and J. Urban 

(IPP-Prague) predict high efficiency central heating at 

densities above 1 × 1019 m-3 and no Doppler-shift

Challenge

How to reach 1×1019 m-3 (28 GHz O-cutoff) ?

• 0.5×1019 m-3 is already reached with X2-mode 

(X-cutoff)

Additional energy sources available

• 20 kW 2.45 GHz resistive R-wave heating at 0.5 T

• Ohmic heating with transformer

mirror



Results from OXB mode heating
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Reaching OXB mode

3.

3. Start OXB conversion above 1 ×1019 m-3 

(O-mode cut-off): 

• central deposition due to high single 

pass absorption

• density peaking up to 1.4 ×1019m-3

(33GHz EBE signal)

• EBE signal in keV – range

(radiation but not electron temperature)

➽ supra-thermal electron component

4.

4. Switch off additional heating:

Plasma sustained by OXB-heating only, 

strongly peaked radiation profiles

2.

2. Overcome power gap above 0.5 ×1018 m-3

(X2-mode cut-off) by additional resistive 

2.45 GHz heating (20 kW)

1.1. Plasma start-up:                                      

Plasma generation by 10% X2-mode 

at resonant field, multi-pass heating 

with broad deposition

He, #30340



Further Results during OXB Phase
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Langmuir probe

• Peaked profiles with ne,0 = 1.3 × 1019 m-3

• Bulk parameters:

ne = 1 × 1019 m-3 at R = 75 cm

Te = 5 -15 eV 

• No sign of supra-thermal component in Langmuir-

probe characteristics
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28 GHz OXB-heating

28 GHz O2/X2 multipass heating

12-channel Bolometer camera

Reconstructed radiation power signal:

• peaked profile during OXB-phase  due to 

central power deposition

• Broad, flat profile during O2-mode heating 

due to multi-pass absorption
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Soft X-ray 

• Pulse height analyzer with range of 0.5keV – 15keV

• Signals above 1keV detected exclusively during OXB phase

• Only Bremsstrahlung, but no characteristic radiation detected (e.g. wall material) except 

from argon from previous experiments

➽ supra-thermal electron component arises in center 

as expected by resonant absorption mechanism
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Optimization

Gas 

• Analogue results in argon even without additional heating 

but no conversion reached in hydrogen (factor of 3 missing in density)

Rotational transform

• iota (iota↑, confinement↑, but plasma size↓) 

• best iota = 0.3 (still limiter configuration, higher iota not accessible)

OXB mirror position

• October 2009: remotely steering of OXB-mirror possible, 

detailed study of emission pattern performed
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Thermal emission pattern for varying toroidal position on target installed at vessel high field side 



Summary and Outlook

WEGA has reached a new unexplored physics regime!

• Quasi-stationary overdense plasma heated by 28 GHz OXB mode conversion exclusively

• Supra-thermal electron component detected in EBE radiation, 

confirmed by X-rays detector, however quantitative fraction to be determined

• Acceleration mechanism of the supra-thermal electron component

➽ auto-resonance cyclotron acceleration of electrons is not limited

Supra-thermal electrons

• Fast particle confinement

• Generation of current drive

• Ray tracing with non-Maxwellian

➽ do they exist and how could they be measured?

• Source for highly charged ions
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