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1. Introduction  
Heliotron-type concept “FFHR”

• Key design points are low neutron wall 
loading, low stored magnetic energy and 
sufficient blanket space.
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Possibility of large size reactor design

• Increase in the reactor size is one possible 
solution! 

Feasibility of design with larger γ (=1.2) 
and inward-shifted configuration has been 
investigated.     
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• Trade-off in design space
– Physics vs. engineering constraints
– Sufficient blanket space vs. suppression of 

stored magnetic energy

2. Design point survey
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Development of system design code   

• Feasible design point was investigated through the 
parameter scan in the wide design space (Rc, Bt, n(r),   
T(r) ) by using the developed system design code

– Calculate coil stored magnetic energy and blanket space 
with the actual helical and poloidal coil geometry

– Plasma performance is estimated by a simple volume-
averaged power balance model with power of parabolic 
density/temperature profile

and ISS04v3 energy confinement scaling. 

• Coil and plasma geometries were fixed
– a pair of γ=1.2 helical coils and two pairs of poloidal coils
– Inner-shifted magnetic axis position (Rax/Rc=3.6/3.9).

Tn Tn αα ρρρρ )1()(,)1()( 22 −=−=
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Adjustment of poloidal coil position

• Adjustment of poloidal coil position enables the increase of 
blanket space as well as increase of plasma volume（~22%）.

wo/ adjustment

w/ adjustment w/ adjustment

wo/ adjustment
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Prerequisite of design
• Physics: 

– Density : up to 1.5 times of Sudo density limit scaling 
(already achieved in past experiments)

– Self-ignited plasma (no auxiliary heating power)

• Engineering: 
– Average neutron wall loading <1.5MW/m2 

– Blanket space  ~1.0m
– Stored magnetic energy <160GJ
– Helical coil current density : 25A/mm2

– Fusion output : ~3GW
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• In case of constant (~3GW) fusion output, beta value is limited by 
engineering constraints (stored magnetic energy, neutron wall load) 
and the required confinement enhancement factor.

Effect of beta value
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• Blanket space with ~1m can be obtained with stored 
magnetic energy ~160GJ.

Engineering constraints
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Design parameter

5.55.0
(diamagnetic 

measurement)

Averaged beta <β> [%]

2.2Divertor heat load Γdiv [MW/m2]

11.59.2Max. filed on coil Bmax [T]

2553Coil current density jc [A/mm2]

0.9850.12Blanket space ∆ [m]

1600.9Stored magnetic energy Wmag [GJ]

3.0Fusion power Pfus [GW]

1.5Neutron wall load Γn [MW/m2]

1.201.25Pitch parameter γ

17 / 4.083.9 / 0.98Coil major / minor  radius Rc / ac [m]

15.7 / 2.503.6 / 0.64Plasma major / minor  radius Rax / <ap > [m]

192730Plasma volume Vp [m3]

5.04Toroidal magnetic field Bax [T]

1.3 / 1.2Confinement enhanced factor to LHD / ISS4

Present 
DesignLHDParameter
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3. Finite-beta equilibrium calculation

• The system code assumes plasma volume as large as 
volume enclosed by LCFS in vacuum equilibrium.

• Plasma volume shrinks with Shafranov shift. 

• In LHD experiments, control of magnetic axis during 
plasma discharge by changing poloidal coil currents has 
been demonstrated. 

Shrinking of plasma volume due to Shafranov shift can 
be suppressed.

• Investigation of high-beta equilibrium consistent with point 
design by using numerical code VMEC
– Demonstration of restoration of the volume of high-beta plasma by 

applying vertical field
– Provision of base data for other analyses (stability, transportation, 

boot-strap current, etc.)
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Separatrix position in LHD

• Outermost surface is considered to enlarge to the position that 
equivalent to Rax=3.6m of LHD with the shift of magnetic axis 
by finite-beta effect from the further inward-shifted position.
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Calculation condition
• Boundary condition：

– Outward plasma boundary position in 
horizontally- elongated cross-section is fixed 
at the same position of LCFS for vacuum 
equilibrium.

• Pressure profile：
– In reference to LHD high-beta operation,

p=p0(1-s)(1-s4)
was adopted (s :normalized toroidal flux)

– For more peaked profiles, 
p=p0(1-s)(1-0.3s)(1-s4)
p=p0(1-s)(1-0.6s)(1-s4)

were used.
• Peak beta value：

– Selected to achieve the same plasma stored 
energy as estimated by the system code.
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VMEC result（parabolic profile）

• Plasma volume as large as vacuum configuration with the 
sufficient plasma stored energy (~1300MJ) can be 
achieved.
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Mercier analysis（parabolic profile）

• In case of the configuration with the same volume as 
vacuum condition, all region is Mercier unstable.
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VMEC result（parabolic profile）

• The required plasma stored energy can be achieved with 
slightly outward-shifted configuration.
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Mercier analysis（parabolic profile）

• Mercier stable region can be enlarged by moving the 
magnetic axis position slightly outward.
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VMEC result（peaked profile）

• High beta equilibrium for peaked profiles can be achieved with 
further high central beta value and vertical field strength.
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Mercier analysis（peaked）

• Relatively larger region becomes Mercier stable due to the 
larger Shafranov shift compared with the parabolic profile case.
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Change in vacuum field

~6cm shift

Divertor leg position also moves

How about with finite-beta effect?
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4. Summary and future work
• The design of core plasma with the LHD-type 

heliotron configuration has been advanced. 
– There exists a design window that satisfies engineering 

feasibility with the core plasma that can be extrapolated 
from the present achievement of LHD experiments. 

– Existence of equilibrium magnetic surface with sufficient 
volume and stored energy has been confirmed.

• For more reliable core plasma design, we need to
– Check the magnetic surface structure including stochastic 

region (interference of inner ergodic layer with the first 
wall, change in effective plasma volume)

– Evaluate the effect of boot-strap current
– Evaluate the effect of the change in magnetic surface 

structure on alpha particle confinement property
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Blanket space vs. Confinement property
(a) (b)

Helical X-point Divertor (HXD)
A. Sagara et al., FED 81 (2006) 2703. 
T. Morisaki et al., FED 81 (2006) 2749.

FFHR-2S Type-I
Proposed by N. Yanagi
Rc = 15.0 m, ac = 3.0 m, γ = 1.0

Bax = 6 T, ap = 1.5 m, W = 143.2 GJ

Smaller size and higher field 
with γ = 1
(reduction of total mass)
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Design of FFHR-2m2
~Trial to increase blanket space~
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Fig. 1. Helical-type power reactor FFHR2m1. Helical-type power reactor FFHR2m1.

Advanced liquid blanket systems for FFHR2 (1)

Investigation of neutronics feasibility
with simple torus geometry

For design parameters of 
Neutron wall load: 1.5MW/m2

Blanket space: 1.2 m
　　Local TBR 1.2 - 1.3
　　Fast neutron flux at coils < 1.0x1010 n/cm2/s

Four types of liquid blanket systems
(Flibe-cooled and Li-cooled)  

Fig. 2 Structures of advanced liquid 
blanket systems proposed for FFHR2m. 
(a)Flibe+Be/JLF-1 (b)Flibe cooled STB 
(Spectral-shifter and Tritium breeding 
Blanket) (c) Li/V-alloy, Flibe/V-alloy 
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Structures of advanced liquid blanket 
systems proposed for FFHR2m.

(a)Flibe+Be/JLF-1 (b)Flibe cooled STB (Spectral-
shifter and Tritium breeding Blanket) (c) Li/V-

alloy, Flibe/V-alloy blanket systems

Thanks to Dr. T. Tanaka, NIFS
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Advanced liquid blanket systems for FFHR2 (2)

Blanket type Li/V-alloy Flibe/V-alloy

Breeding
coolant

Liquid 
lithium

Flibe
(LiF:55 mol%,
BeF2: 45 mol%)

Structural 
material V-4Cr-4Ti V-4Cr-4Ti

Solid neutron
multiplier ----- -----

Enrichment
ratio of 6Li (%)

35 35

54 60

Thickness of 
radiation shield (cm) 66 60

Local TBR 1.34 1.26

8.7 x 109 1.4 x 109

Parameters and performance of self-cooled blanket systems for FFHR2

Flibe
(LiF:55 mol%,
BeF2: 45 mol%)

Flibe
(LiF:55 mol%,
BeF2: 45 mol%)

Thickness of 
breeding layer (cm)

Fast neutron flux (>0.1 MeV)
at outside of radiation shield

(n/cm2/s)

JLF-1 (RAFS) JLF-1 (RAFS)

Flibe-cooled STBFlibe+Be/JLF-1

7.5 40

Thickness of Armor (cm)

Be Be

16 ----- ----------

32 31

6060

8.1 x 1091.1 x 1010

1.171.23

Thanks to Dr. T. Tanaka, NIFS
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• Confinement degradation due to the increase in helium ash 
fraction can be cancelled out  by the temperature profile peaking.

Effect of plasma profile


