

Extrapolation of the W7-X magnet system to reactor size

F. Schauer, H. Wobig, K. Egorov, V. Bykov, and M. Köppen

Max-Planck-Institut für Plasmaphysik (IPP), Euratom Association, Branch Institute Greifswald, Wendelsteinstrasse 1, 17491 Greifswald, Germany 7-X

IPP

CONTENT

HELIAS magnetic design with MODUCO

Coil cable

Coil winding pack

Magnet system structure

Electrical design

Conclusion

MODUCO

(MODUlar COils) by H. Wobig

Features:

Unternehmung

7-X

WENDELSTEIN

- Central coil filament (CCF) is represented by 4-6 control points with tangent vec
- CCF is interpolated by cubic Beziér curves
- Wendelstein 7-X field has been well reproduced with MODUCO
- Classical stellarator and 3, 4 and 5 period reactor configurations can be reprodu
- The code computes magnetic surfaces and particle orbits
- Magnetic field within the WP and the forces on the coils can be computed

Further features are planned:

- Computation of inductivity, magnetic energy, plasma currents, field ripple
- Modelling of vacuum vessel and blanket,
- Neutron wall load

Unternehmung Max-Planck IPP **HELIAS reactor magnet system WENDELSTEIN** Institut für 7-X Plasmaphy HSR50a - 0 × HSR 50c Scaling 4 x 5 P Symmetry Coil number 50 Major radius 22 5.6 B on axis 12. B on coil Magnetic energy 152

The magnetic field is isomorph to the Wendelstein 7-X field

IPP

Comparison of ITER and HSR5 coils

ITER toroidal field (TF) coil

HSR50a coil #5

Comparison of ITER TF and HSR50a coils

~	ITER	HSR50a	HSR50a		
	TF	SqC*	RP*		
Cable current	68 kA	86 kA			
No. of cable turns	134	156			
Max. induct ion at	11.8 T	12.3 T			
Operation temperature	5 K				
Superconductor material	Nb ₃ Sn	Nb ₃ Al			
Strand diameter	0.82mm				
SC strand Cu:non -Cu	1				
No. of sc strands	900	630			
No. of additional Cu	522	792			
Void fraction	29 %	29 %			
Cable Cu:non -Cu ratio	2.2	3.5			
O.D. of central channel	10 mm				
O.D. of cable	40 mm				
O.D. of jacket	44 mm	53x53mm_	44 mm		
Conductor insulation	1 mm	1.5 mm	1 mm		
RP insulation	1 mm	- 1 mm			
DP* insulation	3 mm				
Ground insulation	7 mm				
WP embedding	4 mm				

* SqC: squ are conductor $\ ,$ RP: radial plate $\ ,$ DP: double pancake

7-X

Unternehmung

WENDELSTEIN

HSR50a winding pack (WP) options

Square conductor concept acc. to ITER CS and PF coils

Radial plate concept acc. to ITER TF coils

HSR50a coil 1 central current filament

in the "minimum coordinate" system.

HSR5 coils comparison

Dimensions of the CCF in the "minimum coordinate system"

Coil type	Min. height [m]	Max. length* [m]	Width [†] [m]	Pos. dev. [‡] [deg]	Neg. dev. [‡] [deg]	CCF length [m]
1	3.49	11.22	7.30	63.8	-47.1	34.1
2	3.33	11.21	7.50	58.1	-44.3	33,8
3	2,80	11.65	7.58	49.7	-37.1	33,6
4	2.49	12.09	7.19	51.1	-31.4	34,1
5	2.22	12.02	7.57	40.5	-30.7	34,4
ITER TF	0	~12.5	~8	0	0	34.5

*) Perpendicular to minimal height

†) Perpendicular to min. height and max. length

‡) Deviations of tangent vectors from planarity

Radial plate (RP) of coil type 1

Orientation wrt. the min. coord. system

Unternehmung

7-X

WENDELSTEIN

HSR50a radial plate concept

Unternehmung

7-X

WENDELSTEIN

RP rib prototype for ITER

Unternehmung WENDELSTEIN 7-X

Structural analysis

Coil casing and inter-coil structure model

Module inboard side

Module outboard side

•Local stress peaks are partly acceptable; partly are due to rough interface modelling

- Only a few stress peaks need to be eliminated during detail design
- Allowable limits are: 625 MPa membrane; 810 MPa membrane plus bending stresses
- Realistic material with 940 MPa yield limit assumed
- At no place a steel plate thickness >150 mm required
- Maximal deformation due to Lorentz forces is 60 mm only

Electrical design

Comparative estimates for coil fast discharge behaviour are performed with the following relations:

Discharge voltage:
$$U = L \cdot \frac{I}{\tau}$$

Hot spot temperature: $\int_{t_0}^{t} I^2(t) \cdot \frac{\rho_{Cu(T)}}{A_{Cu}} dt = \int_{T_0}^{T} \left(\sum m_i \cdot c_i(T)\right) dT$

(τ = equivalent discharge time constant, m_i = mass per unit length)

Not considered are:

- Thermal capacities of electrical insulation and RP
- Helium flow within the conductor
- Secondary currents in RP and structure
- Capacitances between the WP components
- 3D-heat conduction within conductor and WP
- Increasing resistivity of the discharge resistors

Electrical design

simplified analysis results

	ITER	HSR50a sqare cond.	HSR50a RP	
Energy, W	41 GJ	152 GJ		
W per coil	2.3 GJ	3 GJ		
Inductance, L	17.7 H	41.1 H		
Discharge time, τ	11 s	11 s		
Voltage per coil pair	12.2 kV	12.8 kV		
Thot-spot, $\Delta^* = 2 \text{ s}$	150 K	120 K	290 K	
Thot-spot, $\Delta = 1 \text{ s}$	-	85 K	220 K	

*) Δ is the switch-off time delay

Electrical layout:

- All coils in series with one power supply
 - Fast discharge unit after every other coil
 - 25 pairs of current leads

Conclusion

- A 5-periodic HELIAS reactor with ~12 T at the coil and 5.5 T at the plasma axis can be built
- The basic physics can be directly taken over from W7-X
- Quasi existing ITER key technologies need only to be adapted to a HSR5 magnet system
- For further development work a professional full-time engineering team has to be installed
- 3- and 4-periodic HELIAS versions have to be considered too as options
- Final design decisions will be influenced by the outcome of the W7-X experiments