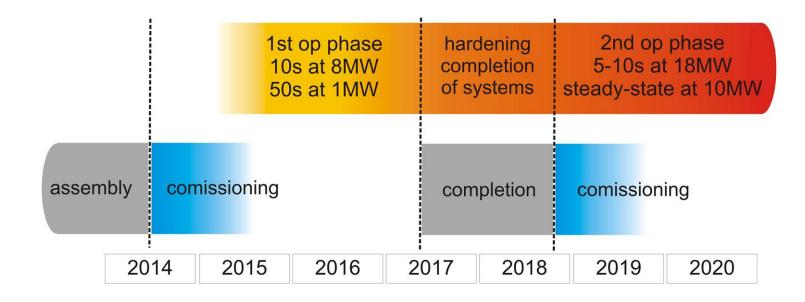
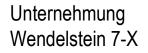


Physics programme for initial operation of Wendelstein 7-X

Hans-Stephan Bosch Max-Planck Institute for Plasma Physics Greifswald, Germany

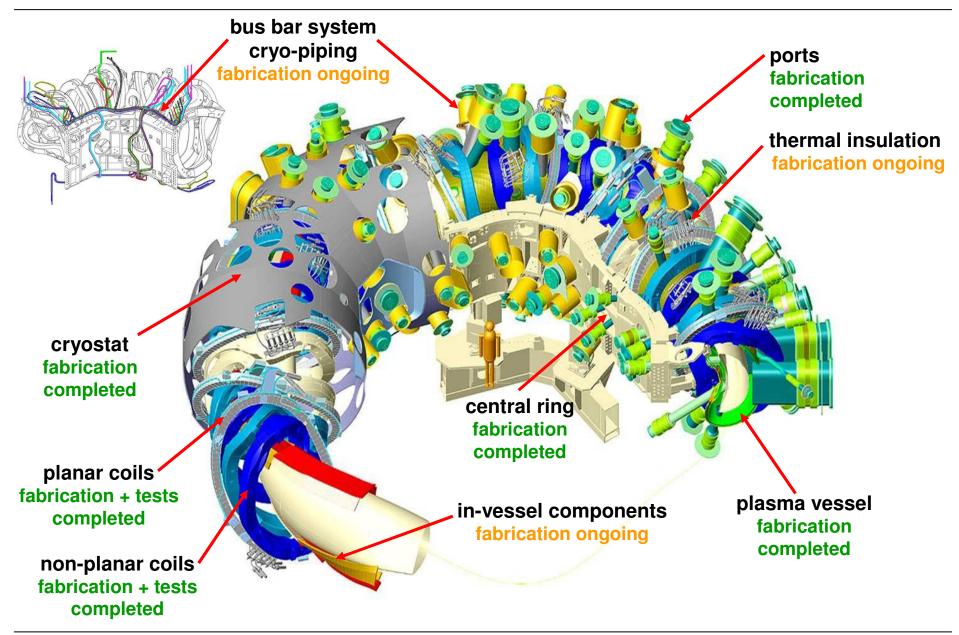


¹⁷th Int. Stellarator/Heliotron Workshop, October 12 - 16, 2009, Princeton, NJ


Unternehmung Wendelstein 7-X from construction to physics

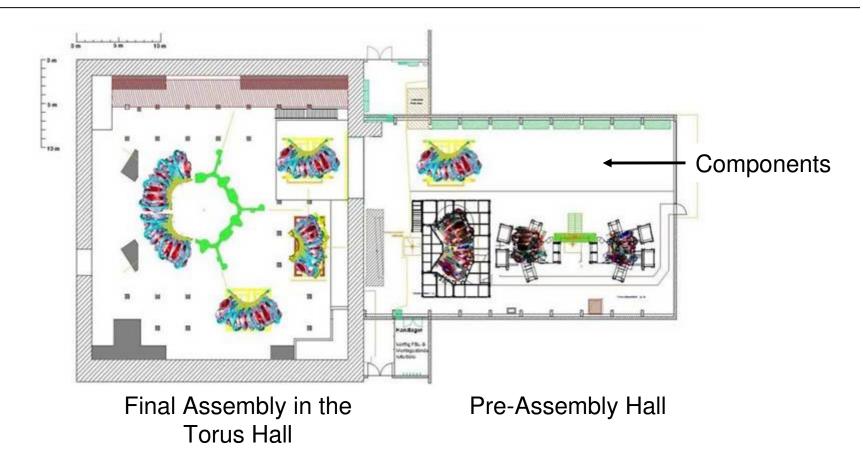
Max-Planck-Institut für Plasmaphysik

- stepwise approach
- 1st operation phase with 10s @ 8MW, inertially cooled divertor and only partial cooling of in-vessel components
- shut-down (15 months) for completion and hardening
- 2nd operation phase to approach 30min @ 10MW



- Construction, status and schedule
- Commisioning
- Experimental set-up for first operation phase
- Initial physics programme
- Summary

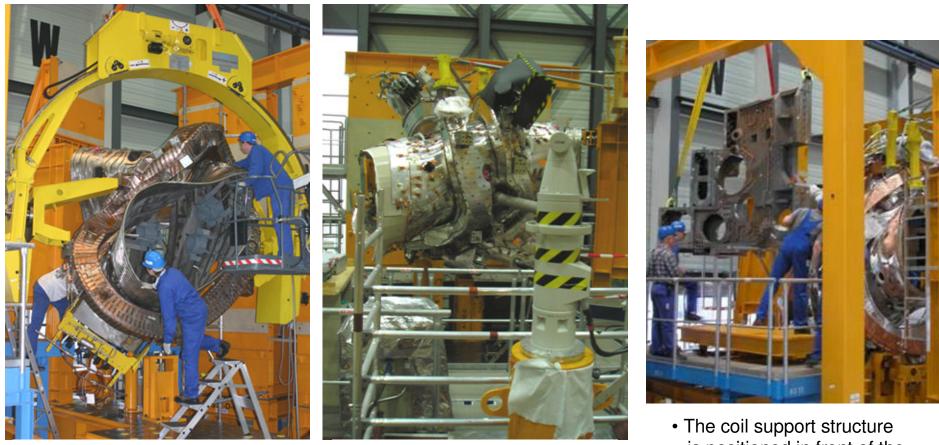
Wendelstein 7-X main components


Unternehmung

Unternehmung Wendelstein 7-X

Assembly

Max-Planck-Institut für Plasmaphysik


- Preparation of components is organised independently from the assembly activities
- The module assembly is carried out on different mounting stands in two halls

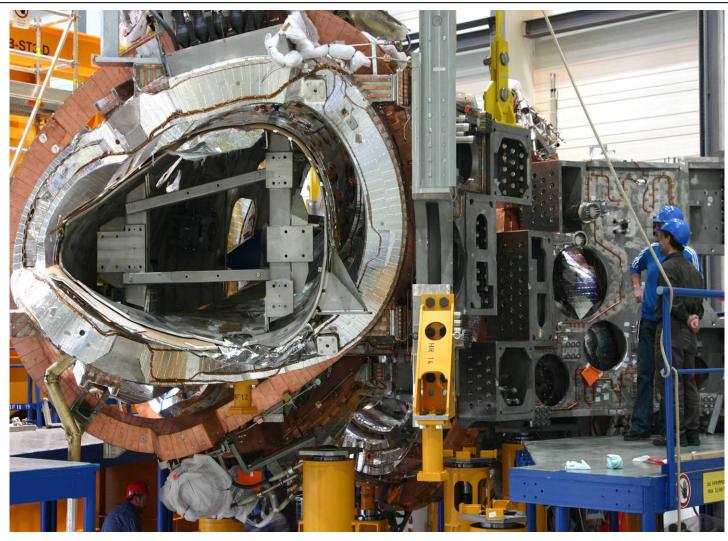
Unternehmung Wendelstein 7-X

Pre-assembly, I

Max-Planck-Institut für Plasmaphysik

Coils are threaded across the plasma vessel

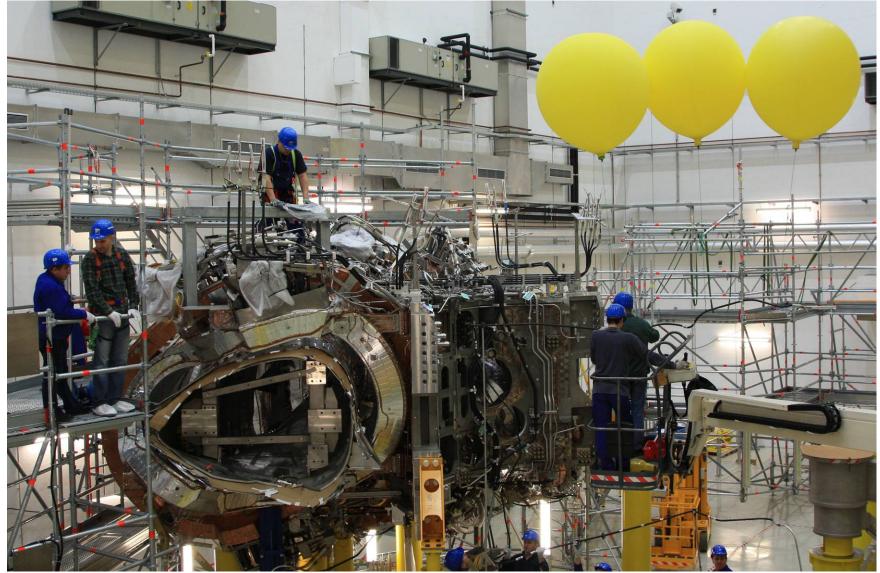
Thermal insulation is completed


 The coil support structure is positioned in front of the 7-coil pack

Coils are bolted to the central support ring

Pre-assembly, II

Max-Planck-Institut für Plasmaphysik


- The flip-symmetric half-modules are aligned
- The step-flange is bolted and the vessel half-modules are welded
- Thermal insulation, Inter-coil structure are completed

Unternehmung

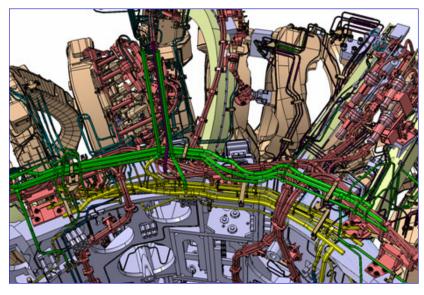
Pre-assembly, MST III

Max-Planck-Institut für Plasmaphysik

Module 5, February 2009

Unternehmung

Pre-assembly, MST III


Max-Planck-Institut für Plasmaphysik

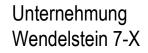
Cryopiping to be welded

Bus-bars to be mounted

Comprehensive collision checks required during design, layout and installation of the two systems

Unternehmung

Pre-assembly, MST III



Max-Planck-Institut für Plasmaphysik

28 electrical joints between bus-bars and coil conductor are welded and insulated

Unternehmung

Torus hall, March 2009

Max-Planck-Institut für Plasmaphysik

Nr.	Vorgangsname	Anfang	Ende	2008	2009	2010	2011	2012	2013	2014
				Q1 Q2 Q3 Q4	4 Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 (
0	Assembly planning (technological sequence)	Mo 21.03.05	Do 07.08.14							
1	1. Module (#5)	Mo 21.03.05	Mo 19.09.11							
20	2. Module (#1)	Mi 27.02.08	Mo 21.05.12							
42	3. Module (#4)	Mi 24.09.08	Fr 01.03.13							
65	4. Module (#2)	Do 26.03.09	Fr 12.07.13		•					
88	5. Module (#3)	Di 17.11.09	Mi 23.10.13							
110	Final adjustment of modules	Fr 25.03.11	Fr 25.03.11				4-25.03.			
111	Module connections (parallel work)	Fr 04.11.11	Di 05.08.14				╡╎╵┤╌╄┳┉			
134	Completion of torus	Mi 09.10.13	Do 07.08.14							
142	Periphery installation in torus hall	Di 18.01.11	Do 07.08.14							Ψ
151	MST 29: Start Commissioning	Do 07.08.14	Do 07.08.14							🔶 MST 29

October 12, 2009

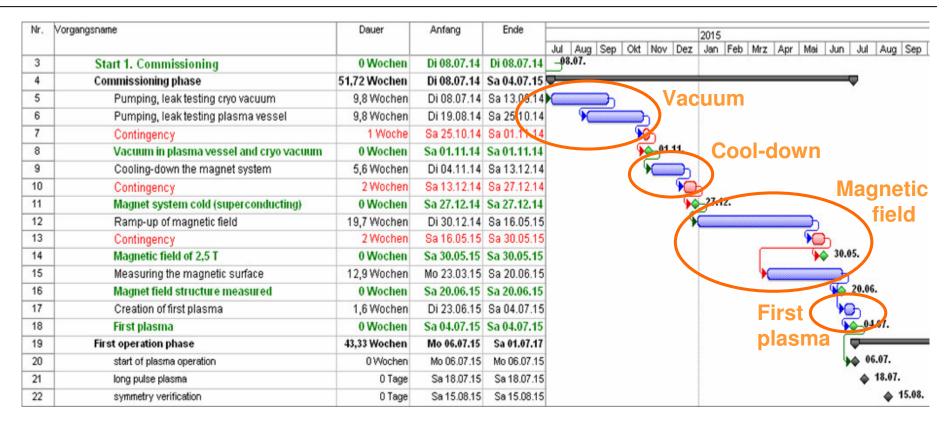
- The module assembly is organised in parallel
- 4 out of 5 modules are in the works
- The assembly schedule still contains half a year buffer times
- Assembly will be finished in summer 2014

Unternehmung Wendelstein 7-X

- Construction, status and schedule
- Commisioning
- Experimental set-up for first operation phase
- Initial physics programme
- Summary

Commissioning of W7-X has three steps with increasing levels of system integration.

- 1. Local commissioning of the technical components. This includes instrumentation and local control and will be done before the end of W7-X assembly.
- 2. Integrated commissioning: Stepwise integration of these components into the overall system, the central device control and the central data acquisition system.


This process is centred around four major work packages

- Vacuum operation
- Cryogenic operation
- Magnetic field operation
- First plasma
- **3. Transition into plasma operation**: Demonstration that the overall system meets the basic technical requirements and enables scientific use of the device. This includes plasma start-up and control.

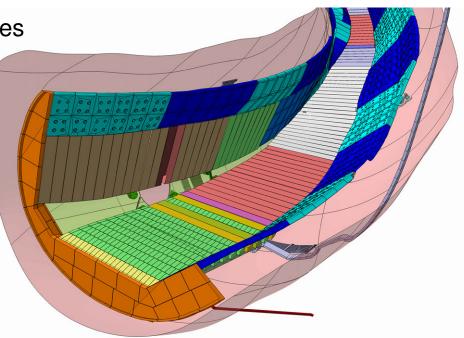
Unternehmung Wendelstein 7-X Commissioning schedule

Max-Planck-Institut für Plasmaphysik

- first planning of the four work packages available
- milestones have been identified
- detailed planning has to be worked out (optimization of work steps)

- Construction, status and schedule
- Commisioning
- Experimental set-up for first operation phase
- Initial physics programme
- Summary

Unternehmung

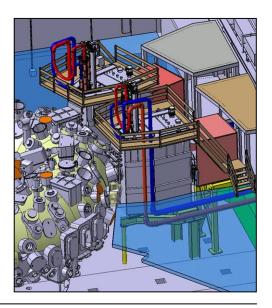

Wendelstein 7-X

In-vessel components

Max-Planck-Institut für Plasmaphysik

- inertially cooled "test divertor" 10 modules
- conventional graphite tiles
- same geometry as HHF-divertor
- adjustable frame
- ⇒ Allows much more robust operation and check of magnetic geometry, in preparation of HHF-divertor
- operation limited to 5-10s at 8MW power
- no cryo pumps
- limited water-cooling inside plasma vessel
- design review in March 2009
- manufacturing has started

prototype graphite module



The test divertor will be replaced by the HHF-divertor after the first operation phase.

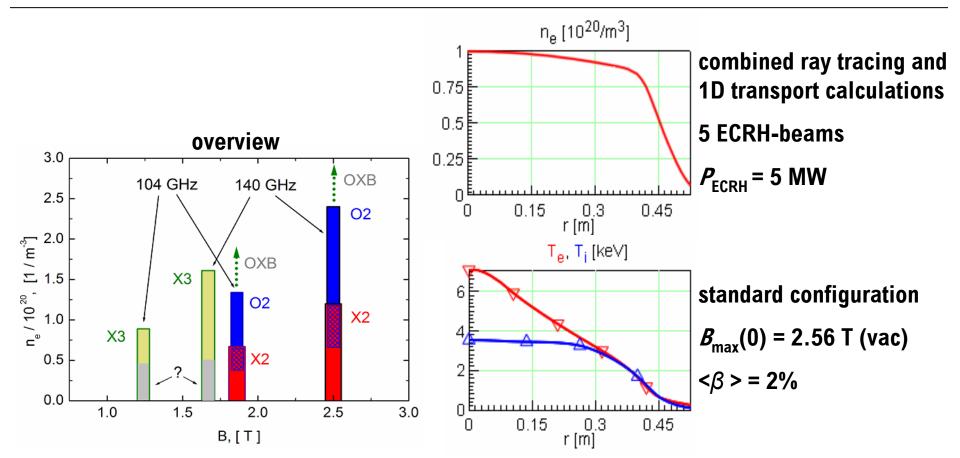
- 8 x 1 MW ECRH @ 140 GHz available (30min)
- tuning to 105 GHz at 50% output power possible
- switch between X and O polarisation
- 4 ECRH beam launchers with 3 individual front steering mirrors
- steering range -15°< Φ_{tor} < +35° and -25°< θ_{pol} < +25° with 25%
- cooled reflector tiles on the high field side
- two NBI boxes with two beams each
- 7 MW for H (55 keV) and 10 MW for D (60 keV) operation
- copies of the AUG system with RF PINIS
- rather radial injection \pm 7.44 °
- about 50% Polish contribution (decision pending)

I: plasma core spectrocopy	concept	design	manufacturing	cooperation	III: divertor diagnostics and magnetics	concept	design	manufacturing	cooperation
diagnostic beam			\bigcirc	FZJ/Budker (Rus)	neutral gas gauges			\bigcirc	
CXRS		\bigcirc	\bigcirc		divertor thermography		\bigcirc	\bigcirc	
soft x-ray tomography			\bigcirc		divertor thermo couples (TDU)		\bigcirc	\bigcirc	
pulse height analysis			\bigcirc	IPPLM (PL)	video diagnostics			\bigcirc	KFKI (Hun)
bolometry		\bigcirc	\bigcirc		magnetic diagnostics			\bigcirc	
C/O-monitor		\bigcirc	\bigcirc	U-Opole (PL)	langmuir probes (TDU)			\bigcirc	
HEXOS VUV spectroscopy				FZJ	$H\alpha$ diagnostics		\bigcirc	\bigcirc	
neutron counters		\bigcirc	\bigcirc	РТВ	visible spectroscopy		\bigcirc	\bigcirc	
II: microwaves and laser diagnostics					thermal Helium beam			\bigcirc	FZJ
thomson scattering		\bigcirc	\bigcirc	IPP-AUG	laser-induced flourescence			\bigcirc	FZJ
interferometry		\bigcirc	\bigcirc	FZJ					
electron cyclotron emission									

- about 20 different diagnostic systems will be available for the first operation phase
- development structured in three topical groups
- progress presently hampered by bottlenecks in design capacity
- steady state CoDaC system

Unternehmung

- Construction, status and schedule
- Commisioning
- Experimental set-up for first operation phase
- Initial physics programme
- Summary



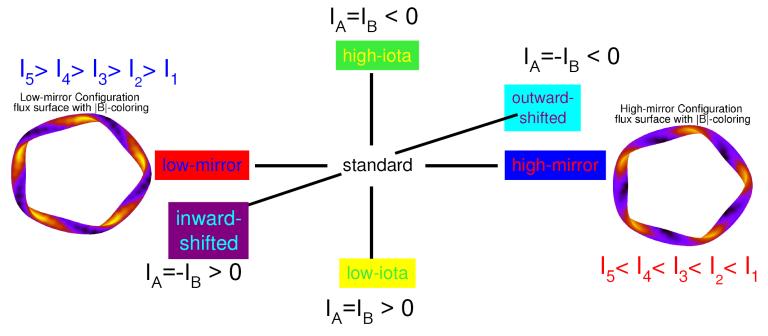
- Development of the programme has started with a dedicated seminar series, involving all senior scientists and covering all physics aspects.
- The final goal of the first operation phase is to develop an integrated high-density scenario with configuration control and edge conditions suitable for divertor operation.
- This scenario forms the basis for high-power steady-state operation to be explored during the second operation phase.
- The first operation phase of Wendelstein 7-X can be broken down in a number of (technical) milestones and intermediate scientific aims.

Nr.	milestone/work package	4		2016				2017					
		Q2 Q3 Q4		2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	vacuum conditions achieved	♦ 12	.09.										
2	magnet system cold	•	07.11.										
3	2.5T magnetic field achieved		• *	10.04									
4	magnetic field structure confirmed		•	01.0	5.								
5	diagnostic systems ready		•	01.0	5.								
6	heating systems ready		•	01.0	5.								
7	first plasma		•	15.0)5.								
8	long pulse plasma			29.	05.								
9	symmetry verification			é 26	6.06.								
10	density control investigations										_		
11	X2-heating up to cutoff				•								
12	confinement properties												
13	impurity control investigations							_					
14	tolerable divertor load scarios								_				
15	X2-current drive for edge iota tuning							-	_				
16	dense NBI driven plasmas								-				
17	divertor high-recycling regime												
18	O2-heating and cutoff										_		
19	shut down for completion										٠	15.0	5.

Unternehmung Wendelstein 7-X X2-Heating up to the cut-off limit

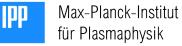
• plasma startup 0.7MW X2 at 140 or 104 GHz

- low density plasma <= 1.2.10¹⁹ m⁻³
- high electron temperature >4 keV

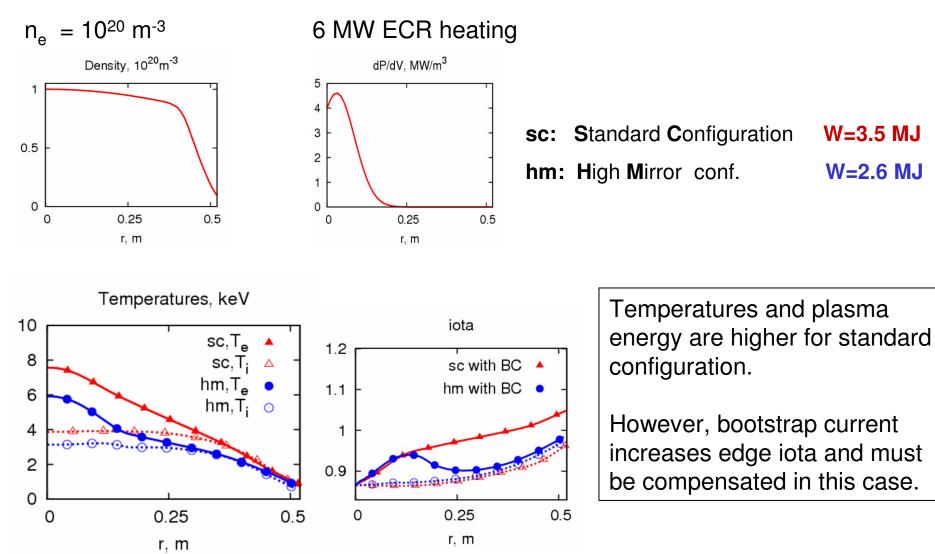

Max-Planck-Institut

für Plasmaphysik

IPP


magnetic flexibility of the device

Unternehmung



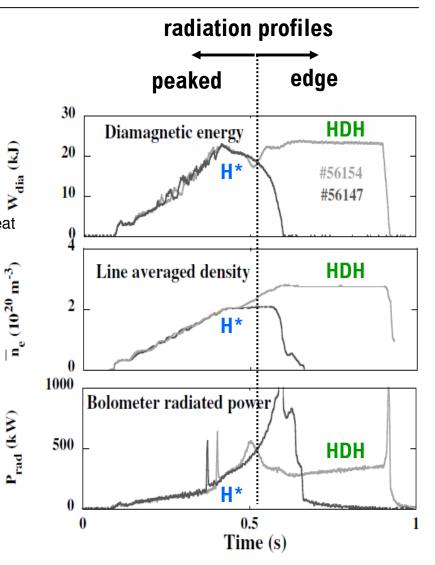
- variation of the toroidal mirror component varies $\epsilon_{eff} \sim 0.0 \dots 0.1$ varies χ_{e}
- verification of reduced 1/v transport in the X2 4MW discharge scenario
- confinement scaling and comparison to ISS04
- configurational effect on $\langle j_{||} \rangle / \langle j_{\perp} \rangle$ (Shafranov shift, $\iota\text{-profile})$
- MHD stability limits? $\leftarrow \langle \beta \rangle$ too low
- fast particle confinement? $\leftarrow \langle \beta \rangle$ too low

Unternehmung Wendelstein 7-X Confinement and configuration

Predictive transport simulations for a variation of the mirror ratio

Unternehmung Wendelstein 7-X

Impurity studies


Stellarators have a soft density limit with the scaling $n_{DL} = 1.46 (P/V)^{0.48} B^{0.54} \leftarrow verify$

impurity accumulation at higher densities the aim is stationary plasma with $P_{rad} < 50\%$ P_{heat}

- reduction of impurity confinement
- reduction of impurity influx
 - drag forces at the plasma edge?
 - role and control of ELMs?
 - role of turbulence?

Note:

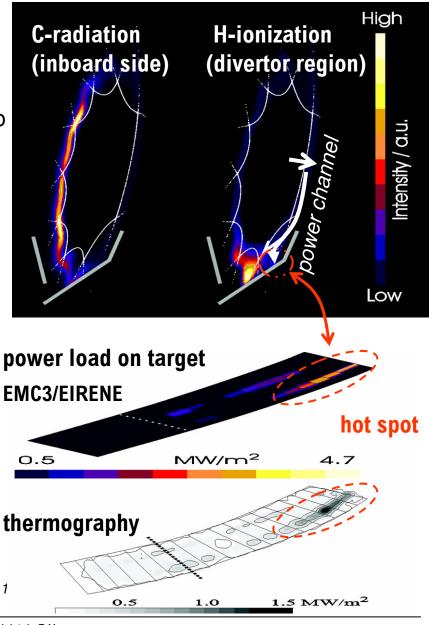
temperature screening does not occur in stellarators, even for positive radial electric field (e-root)

experience with W7-AS

Max-Planck-Institut für Plasmaphysik

- experience with W7-AS island divertor
- good modelling capabilities with EMC3/EIRENE
- divertor target overload at $\iota=1$ by factor ~2 due to
 - coil alignment \rightarrow field errors $B_{11}/B_0 = 1-5 \cdot 10^{-4}$
 - divertor misalignment 1-2cm
 - additional impact of E×B drift

To be investigated:


Unternehmung

Wendelstein 7-X

- 1. flux surface structure (islands if possible)
- 2. strike line locations
- 3. strike line extensions (length & width)
- 4. power load distribution within strike lines

Resulting actions:

divertor re-alignment, sweep coils B_{33} , trim coils B_{11}

- Fabrication of components well under way/finished
- Assembly on 4 out of 5 modules in progress
- Commissioning will start in summer 2014
- Test divertor unit to study operation limits and develop divertor scenarios
- 8MW ECRH and 7 MW NBI
- Diagnostics sufficient to conduct the initial program is being prepared
- Scientific program has been developed by the W7-X team first steps:
- 1. Low density ECRH heating scenarios
- **2**. Confinement studies at moderate β
- 3. Density limits and impurity transport
- 4. Tolerable divertor loads

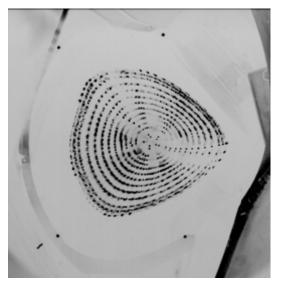
Thank you !

Commissioning of W7-X has three steps with increasing levels of system integration.

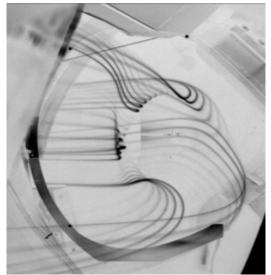
- 1. Local commissioning of the technical components. This includes instrumentation and local control and can mostly be done before the end of W7-X assembly.
 - device control, safety control, data acquisition
 - vacuum systems
 - water cooling/baking system
 - wall conditioning systems (glow discharge, HF-conditioning)
 - cryo plant and He distribution system
 - coil power supplies including QD system
 - gas injection system
 - start-up diagnostics
 - Heating systems (ECRH, NBI)
- 2. Stepwise integration of these components into the overall system, the central device control and the central data acquisition system.
- 3. Demonstration that the overall system meets the basic technical requirements of the W7-X system specification and enables scientific use of the device. This includes plasma start-up and control.

- **1.** Vacuum (Vacuum systems, control, instrumentation, conditioning systems)
 - leak tightness of plasma vessel and outer vessel, evacuation
 - leak tightness of water and He cooling pipes, cooling water flow adjustments
 - cleaning of vacuum vessel, wall conditioning, baking
- 2. Cooling (cryo plant, instrumentation, control system)
 - leak tightness of *cold* cooling pipes
 - cryogenic He-flow adjustments
 - cool down of magnet system
 - » insulation (heat balance, heat leaks)
 - » movements during cool-down (check for collisions)
- **3.** Magnetic field (power supplies, QD-system, control system, flux surface measurement)
 - initial operation of magnet system and magnet safety system
 - superconductivity (especially in joints)
 - forces and movements under load
 - » monitoring by strain gauges, distance sensors and contact sensors
 - » Comparison with predictions from finite element codes
 - magnetic surfaces (at low field and at higher field)

Flux surface measurements



Max-Planck-Institut für Plasmaphysik


fluorescent method: interaction of e-beam with fluorescent detector in a fixed plane \rightarrow 2D Poincaré plot

Unternehmung

Wendelstein 7-X

field line tracing in background gas: excitation in background gas by e-beam \rightarrow 3D trace in torus

- rod with ~ 2mm diameter
- highly transparent ~ few 10 transits
- small details visible (e.g. magn. axis, island)
- duration: ~10s/flux surface (manipulator)
 ~0.5h/magnetic configuration

W7-AS: 35 transits ≈ 450m W7-X: 10-15 transits expected

- magnetic axis, X-points, separatrix
- possible calibration source for diagnostics

Unternehmung Wendelstein 7-X Key elements of inital research

Max-Planck-Institut für Plasmaphysik

Start of operation

- basic divertor operation and density control
- approach X2-density limit
- prove good confinement/neoclassical optimisation/MHD-stability
- achieve impurity transport control
- tolerable divertor load at full heating power
- X2 off-axis current drive for bootstap current compensation
- approach O2-density limit
- divertor high-recycling regime
- first O2 off-axis current drive experiments

Shut down (15 months): replacement of divertor modules and hardening

- operation of actively cooled divertor
- step-wise approach towards 10MW 30min shots
- long-pulse discharge scenario optimisation

Bundle of measures to stabilise the completion date mid 2014 (BMBF workshop Sept 2007)

- Reduction of complexity
- Reduction of project risks
- Acceleration measures (by 2 years)

• Reduction of complexity	90	5			
Reduction of project risks	3mbl	i dia		Qr.	
 Reduction of complexity Reduction of project risks Acceleration measures (by 2 years) 	lion	SAS .		erario As	20
assembly based on 96h/week = 2 shifts on 6 days/week	×				
additional assembly equipment for parallel works	×				
parallelisation of port assembly	×				
shift of work packages into component preparation	×				
omission of 45 ports		×		×	
introduction of 68 weeks buffer time on the critical path		×			
only partial installation of cooling circuits		×		×	×
start with 8MW ECRH and 10MW NBI				×	
Start with inertial test divertor – staged aproach to steady-state		×	×	×	×

Cf. Annex 1-B and Report Bosch