Neoclassically Driven Electron Transport Barrier in the HSX Stellarator

Jeremy Lore University of Wisconsin-Madison 10/12/2009

Special thanks to: Walter Guttenfelder (U. Warwick), Don Spong (ORNL), HSX Team

Outline

- Description of the HSX stellarator
- Evidence of electron transport barrier driven by neoclassical E_r profile
 Peaked T_e profiles measured, electron root E_r with strong radial shear predicted
- 2D turbulent transport model used to describe anomalous transport
 - Peaked T_e profiles only reproduced when ExB shear included
- Density threshold for achieving transport barrier observed for fixed input power
 - Consistent with neoclassical ion root predictions
- Large parallel flow measured and predicted (10-25 km/s)
 - This flow and associated fluxes are accounted for in momentum conserving NC analysis (PENTA)

HSX is Quasi-Helically Symmetric

- QHS: helical direction of symmetry in |B|
- Effective transform is larger than physical transform
- Symmetry breaking < 1% at edge

HSX Parameters

<r></r>	1.2 m
<a>	0.12 m
l	1.05→1.12
B ₀	0.5 -1.0 T
ECRH	<100 kW
28 GHz	

Calculating the Radial Electric Field

- E_r is determined by enforcing ambipolarity
- LMFP with $T_e \approx T_i$ results in three roots

- Electron root can be reached by increasing Γ_{e}
- When T_e >> T_i the ion root solution may not exist near the core

4

HSX Can Achieve Electron Root Because $T_e >> T_i$

- In HSX $T_e >> T_i$ over most of the plasma radius, with a strongly peaked T_e profile
- For T_i≈100eV, ions experience a resonance at modest E_r near plasma core
- The resonance occurs when poloidal velocity is canceled by the poloidal **ExB** drift
- Radial transport is increased near the resonance, and is strongly reduced for E_r>E_r^{res}

Solving the Diffusion Equation for E_r

- The radial electric field profile can be determined by solving a diffusion equation¹
- D_E (related to perpendicular viscosity) is generally not known
 - Solutions for different D_E show a region of strong E_r shear at r/a~0.25

$$\frac{\partial \mathsf{E}_{\mathsf{r}}}{\partial t} - \frac{\partial}{\partial \mathsf{V}} \left[\left\langle \nabla \mathsf{V} \right\rangle \mathsf{D}_{\mathsf{E}} \left(\frac{\partial \mathsf{E}_{\mathsf{r}}}{\partial \mathsf{r}} - \frac{\mathsf{E}_{\mathsf{r}}}{\mathsf{r}} \right) \right] = \frac{\mathsf{e}}{\varepsilon_{\perp}} \left(\Gamma_{\mathsf{e}} - \Gamma_{\mathsf{i}} \right)$$

1) Shaing and Callen (1983), Maassberg et al (1993).

Strong E_r Shear is Predicted in Region of Peaked T_e

- The radial electric field profile can be determined by solving a diffusion equation¹
- D_E (related to perpendicular viscosity) is generally not known
 - Solutions for different D_E show a region of strong E_r shear at r/a~0.25
- T_e peaking occurs within the strong E_r shear region
 - E_r shear can suppress turbulent transport

Applying a 2D Turbulent Transport Model to QHS

- The 2D quasi-linear Weiland model has been used to model turbulent transport in QHS
 - Like a tokamak, QHS has a single class of trapped particles.
 - With local geometry considerations, good agreement with 3D gyrokinetic GS2 growth rates.
 - Stored energy and confinement times predicted within 10%
- Predictive transport (NC + Turb.) simulations underestimate T_e in core
 - Turbulent diffusivity in this region is 10x experimental
 - Transport can be reduced via ExB shear

ExB Shearing Rate >> Linear Growth Rate for r/a < 0.3

- ExB shear suppression is modeled using a linear quench rule:1 $D \Rightarrow D \cdot \max\left(1 - \alpha_E \frac{\gamma_E}{\gamma_{\max}}, 0\right)$

 - $\gamma_{\rm E}$ = ExB shear rate
 - γ_{max} = maximum linear growth rate
- Shear suppression expected inside of r/a = 0.3

2.5

Experiment

Turbulence Suppression via ExB Shear can Reproduce Experimental Profiles

• ExB shear suppression is modeled using a quench rule:¹ $\begin{pmatrix} 1 & \gamma_E & 0 \end{pmatrix}$

$$D \Rightarrow D \cdot \max\left(1 - \alpha_E \frac{\gamma_E}{\gamma_{\max}}, 0\right)$$

- $\gamma_{\rm E} = {\rm ExB}$ shear rate
- γ_{max} = maximum linear growth rate
- E_r shear required to reproduce peaking of experimental T_e profile
- Coupled turbulent and NC transport model can self-consistently explain measured T_e profiles

Guttenfelder, Lore, et. al, (2008), 1) Kinsey (2005)

ChERS Measurements are Inconclusive in Plasma Core

- No measurements exist in region of electron root only solutions
- Large uncertainties due to beam width, flux surface shaping
- Edge measurements are consistent or larger than ion root

Most of Shear Region is Inside of Measurements

- No measurements exist in region of electron root only solutions
- Large uncertainties due to beam width, flux surface shaping
- Edge measurements are consistent with or larger than ion root solutions
- Only central measurement is within shear region, smoothing may occur here due to radial extent of measurements
- See Briesemeister poster this afternoon (P01-04)

CERC Transport Barriers

- CERC (Core Electron Root Confinement) transport barriers have been observed in several other stellarators¹
 - Characterized by peaked T_e profiles, neoclassical electron root E_r
- One common feature is the existence of thresholds for achieving a CERC in P_{inj} and density
 - Thresholds often attributed to ECRH effects (conv. fluxes)
- Recent experiments indicate a threshold in QHS plasmas

Recent Experiments Suggest a CERC Density Threshold

• For same input power, higher density results in less peaked T_e profile

-
$$P_{inj} = 50 kW$$

• At higher density a/L_{Te} is 2x smaller in core

Ion Root is Predicted Across the Plasma Radius at High Density

- The higher density case results in ion root solutions across the entire plasma radius
 - Core ion root is caused by reduced T_e , $\nabla T_e =>$ reduced electron flux
 - Without external drive the plasma would remain in the ion root
- Note that this threshold does not seem to require any additional fluxes (e.g. ECRH driven)

Ion Root is Predicted Across the Plasma Radius at High Density

- Measured E_r does not show large change with density
 - E_r measurements do not exclude core ion root solutions
- High density measurements closer to ion root solutions
- Planned experiment to operate at lower P/n to verify threshold behavior

Neoclassical Calculations Conserve Parallel Momentum

- Neoclassical calculations are performed using the PENTA¹ code
 - Based on the parallel momentum-conserving moments method of Sugama and Nishimura²
- Effects of parallel flow, interspecies collisions included
- Expressions used analytically reproduce intrinsic ambipolarity in symmetric limit
- In principle, this method can be applied to the full range of configurations:

tokamaks \rightarrow rippled tokamaks \rightarrow quasi-symmetric \rightarrow conventional stellarators

Increasing effective ripple

1) D.A. Spong (2005), 2) H. Sugama and S. Nishimura (2002,2008)

Momentum Conserving Calculations May be Important in Quasi-Symmetric Configurations

- Standard NC calculations assume $U_{\parallel} = 0$
 - Justified in conventional stellarators, because no |B| symmetry leads to strong flow damping in all directions
 - Parallel flow may be large in quasi-symmetric configurations
- Large parallel flow (~10-25 km/s) measured in QHS
 - In agreement with PENTA predictions for r/a > 0.6
 - Very large ion root flows are inconsistent with assumption $U_i \ll v_{Ti}$

Momentum Conservation Modifies Neoclassical E_r

- Including momentum conservation changes ion root E_r by a factor of $\sim 2x$
- Effect is small in electron root, where ion flux is reduced due to poloidal resonance
- Modified E_r may be important for LMFP ion confinement
 - Change may be greater for larger T_i

Effect of Momentum Correction Decreases When Quasi-symmetry Spoiled

- Ion particle flux modified in QHS due to momentum conservation
 Effect is masked due to resonance
- Change in ion flux due to flows is smaller when symmetry spoiled
- Detailed investigation of scaling with symmetry breaking in progress
 - Currently no flow, E_r measurements in spoiled symmetry configuration

Conclusions

- Neoclassically driven transport barrier in QHS
 - Peaked T_e profiles measured, electron root E_r with strong shear predicted
- 2D tokamak turbulent transport model well describes QHS anomalous transport
 - Core T_e profiles only reproduced when ExB shear included
- Density threshold for achieving CERC observed for fixed input power
 - Consistent with ion root neoclassical predictions
- Large parallel flow (10-25 km/s) measured in QHS
 - In agreement with predicted flow for r/a > 0.6
 - This flow and associated fluxes are accounted for in momentum conserving NC analysis (PENTA), neglected in "standard" stellarator NC calculations