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Outline

• Background and motivation:

Equilibrium reconstruction calculations for W7AS.

• Equilibria with stochastic regions.



Initially motivated by puzzle on W7AS.
Control coil for island divertor substantially affects 

achievable β.
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Variation of peak-〈β〉 versus the 
divertor control-coil current ICC
normalized by the modular coil 
current, for B=1.25 T, PNB = 2.8 MW 
absorbed and ιvac= 0.44.



Divertor control coils affect resonant field at edge.Divertor control coils affect resonant field at edge.
Is the effect produced by islands at edge?Is the effect produced by islands at edge?
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Vacuum island width does not explain optimal Icc.
Is this just an issue of finite β effect on ι?
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Variation of peak-〈β〉 versus the 
divertor control-coil current ICC
normalized by the modular coil 
current, for B=1.25 T, PNB = 2.8 MW 
absorbed and ιvac= 0.44.

PIES code run for these 
parameters.

Island width zero for 
vacuum field.



PIES results a surprise: Substantial stochastic region.
Calculations for two different values of control coil current are consistent 

with observed trend.

ICC = 0, 〈β〉 = 1.8% ICC = -2.5kA, 〈β〉 = 2.0%

VMEC calculated plasma boundary 

Width of stochastic region larger for ICC = 0, even though it has 
somewhat lower β.



Same trend emerges from PIES β scan for two different 
values of control coil current.

Fraction of good flux surfaces 

versus β as predicted by PIES for 
two different values of the control 
coil current for the W7AS 
stellarator. The circles indicate the 
PIES calculations done for the 

experimentally achieved value of β.



W7AS experimental observations consistent with picture that field line 
stochasticity produces enhanced transport in outer region of plasma.
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• Rechester-Rosenbluth estimate of enhancement in transport due to field-
line stochasticity is consistent.  (But χstoch ∝ Te

5/2, so error bars are large.)

• Observed difference in 
pressure profile consistent 
with estimated effect of field 
line stochasticity.

• Require equilibrium calculation with ∇p ≠ 0 in stochastic region.

An issue also for tokamaks when field line stochasticity contributes to 
transport.



PIES code uses equilibrium equations in form that integrates
to get B from j rather than differentiating to get j from B.

MHD equilibrium:

j × B = ∇p, j = ∇ × B.

Writing j = j‖B/B + j⊥, get

j⊥ = B × ∇p/B2, (1)

∇ · j = 0 gives

B · ∇(j‖/B) = −∇ · j⊥. (2)

Alternative form of equilibrium equations:

∇ × B = j[B], (3)

with j[B] given by Eq. (1) and Eq. (2).

Eq. (3) can be solved numerically by standard methods such as Picard iteration
(Spitzer, Grad) or Newton-Krylov.



Plasma with ∇p �= 0 in stochastic region does not satisfy
MHD equilibrium equation.

j × B = ∇p ⇒ B · ∇p = 0 ⇒ ∇p = 0 in stochastic region.

If radial diffusion of field lines is weak, B ·∇p due to radial pressure gradient
is small, can be balanced by small neglected terms.

j × B − ρv · ∇v − ∇ π = ∇p.

B · ∇p = −B · ∇(ρv · ∇v + ∇ · π)

j⊥ = B × ∇p/B2 + B × ∇(ρv · ∇v + ∇ · π)

2nd term on RHS small, can be neglected. (Relative contribution to resonant
Fourier components of equation also small.)

j⊥ ≈ B × ∇p/B2



Our equations decouple parallel and perpendicular
components of force balance.

j⊥ = B × ∇p/B2 (1)

B · ∇(j‖/B) = −∇ · j⊥ (2)

∇ × B = j[B] (3)

• Perpendicular force balance determines self-consistent equilibrium mag-
netic field.

• Parallel component of force balance can be regarded as part of transport
problem rather than equilibrium problem.

• Note that formulation also permits calculation of j⊥ by alternative code.

Stochasticity enters through Eq. (2).



Equation for j‖ can be cast in same form as plasma
turbulence equations.

For a field B0 with good flux surfaces, have

(∂/∂φ + ι∂/∂θ)
(
j‖/B

)
= −∇ · j⊥/Bφ.

Letting μ ≡ j‖/B and g ≡ −∇ · j⊥/Bφ, have

(∂μ/∂φ + ι∂μ/∂θ) = g.

Assume B = B0 + δB, where B0 has good surfaces and |δB| � |B0|, and
assume Bφ

0 � Bθ
0 . Work in coordinate system (ψ, θ, φ) where B0 · ∇ψ = 0

and B0 · ∇θ/B0 · ∇φ = ι(ψ) constant on flux surfaces of B0.
If ι monotonic function of ψ in region of interest, can adopt it as radial variable:

∂μ(ι, θ, φ)
∂φ

+ ι
∂μ

∂θ
+

δBι

Bφ
0

∂μ

∂ι
+

δBθ

Bφ
0

∂μ

∂θ
= g

Compare with drift-kinetic equation with strong Bz , fluctuating E×B velocity
δVE , neglecting parallel nonlinearity:

∂f(x, v‖, t)
∂t

+ v‖
∂f

∂z
+ δVE,x

∂f

∂x
+ δVE,y

∂f

∂y
= 0.



Resonance broadening approximation replaces effect of
turbulent, fluctuating field with a diffusion operator.

Consider e.g. Vlasov equation with turbulent electrostatic field, with δE ran-
dom Gaussian white noise:

∂f(x, v, t)
∂t

+ v
∂f

∂x
+

q

m
δE

∂f

∂v
= 0. (1)

Equivalent to the more tractable equation

∂f

∂t
+ v

∂f

∂x
− ∂

∂v
Dv(v)

∂f

∂v
= 0, (2)

where

Dv =
( q

m

)2
∫ ∞

0

dτ 〈δE(x̃(τ), τ)δE(x̃(0), 0)〉

and the integral is taken over the turbulent particle trajectories x̃(τ).



Cannot directly apply resonance broadening approximation
to our equation because of causality issue.

Our equation:

∂μ

∂φ
+ ι(ψ)

∂μ

∂θ
+

δBψ

Bφ
0

∂μ

∂ψ
+

δBθ

Bφ
0

∂μ

∂θ
= g.

Vlasov equation with turbulent electrostatic field

∂f(x, v, t)
∂t

+ v
∂f

∂x
+

q

m
δE

∂f

∂v
= 0, (1)

is equivalent to

∂f

∂t
+ v

∂f

∂x
− ∂

∂v
Dv(v)

∂f

∂v
= 0. (2)

• Eq. (1) satisfies causality.
Eq. (2) not reversible in time. Under t → −t, get anti-diffusion.

• Physics for j‖ must look the same whether we integrate backwards or
forwards along field lines.
μ cannot satisfy diffusion equation.



Causality issue can be addressed by working in terms of
Green’s functions.

• Causal Green’s function satisfies diffusion equation.

• Anti-causal Green’s function satisfies diffusion equation with sign of the
diffusion terms reversed.

• General solution of equation for μ can be written as superposition of solu-
tions constructed from the two types of Green’s functions.
μ itself does not satisfy a diffusion equation.

• There remains an issue of periodicity in the torus with respect to θ and φ.

– Want Green’s functions to satisfy periodicity, but periodic solutions
are not spatially causal.
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FIG. 1: Portion of covering space for a magnetic flux surface. Numbers indicate con-
secutive domains that are pierced as field line is traversed in direction of increasing φ.
Periodicity wraps a line into the fundamental square.

The periodic solution is constructed using methods familiar
from ballooning mode theory.

• Work in infinite covering space, θ → ±∞, φ → ±∞, for flux surfaces
of B0 (depicted in Fig. 1).

• Construct periodic solutions by using shifted-sum representation (bal-
looning representation).



We obtain an explicit analytic solution when the field line
diffusion is weak.

• When diffusion coefficient small, diffusion term in equation can be ne-
glected, except near rational surfaces, where radial derivative can be large.

• Radial derivatives of metric elements and Jacobian can be neglected rela-
tive to radial derivatives of the Greens functions near the resonant surfaces.

Diffusion term for causal (anti-causal) Green’s function takes the form:

±Dψ ∂2G±

∂ψ2
,

where Dψ is radial diffusion coefficient of magnetic field lines.
In boundary layer at resonant surface, solution can be expressed in terms of Airy
functions.

• Gives resonance broadening width, in terms of distance along the field line:

ζD ≈ (m2ι′2Dψ)−1/3.



Summary

Solution for equilibria with stochastic field lines:

• We work with the equilibrium equations in the form ∇×B = j[B}.
– Decouples perpendicular and parallel force-balance.
– Stochasticity enters entirely through solution of magnetic differential equation 

along stochastic field lines.
• Can cast the magnetic differential equation in the same form as standard equations 

of turbulence theory.
– Suggests application of resonance-broadening theory.
– Work in terms of Greens functions to handle causality issue.
– Use ballooning representation to handle periodicity issue.
– Can obtain analytic solution for pressure-driven current in limit of weak 

diffusion.



Summary (continued)

• Incorporating model in PIES code, have applied the code to calculate reconstructed  
W7AS equilibria.
– Find threshold in β above which stochastic region appears at plasma edge.
– Calculated differences in size of stochastic region and field line diffusion 

coefficient provide plausible explanation for previously puzzling observations 
that current in divertor control coils has large effect on achievable β.

– Rechester-Rosenbluth estimate for contribution of field-line stochasticity to 
energy transport is consistent with observations.  (But sensitive to local 
temperature.)

– Difference in pressure profile in presence of divertor control coil current also 
consistent with this picture.




