# Three-Dimensional Equilibrium Reconstruction: The V3FIT Code

James D. Hanson, Stephen F. Knowlton *Auburn University* Steven P. Hirshman, Edward A. Lazarus *Oak Ridge National Laboratory* Lang Lao *General Atomics* 

# **Equilibrium Reconstruction**

- Axisymmetric EFIT
  - Observe magnetic diagnostic signals
  - Infer FF' and P' for Grad-Shafranov equation
- Non-axisymmetric V3FIT
  - There is *no* Grad-Shafranov equation
  - There are MHD equilibrium solvers
  - Need to know pressure and current profiles
- A classic Inverse Problem
  - Forward problem: given parameters, determine signals.
    Known Function S<sup>m</sup>(p) Model signals.
  - We know (observe) the signals S<sup>o</sup>. What are the parameters?
    Determine Inverse Function p(S<sup>m</sup>, S<sup>o</sup>)
  - Use Maximum Likelihood Least Squares.



CTH – Auburn U.

# V3FIT Code Design Goals

- Fast
  - Want reconstructions between shots
  - Design Choice: one reconstruction uses one CPU
    => Multiple reconstructions need multiple processors
- Flexible
  - Easy to understand, maintain, and modify
  - Written in Fortran 95
  - Clear and consistent data flow modular coding
- Extensible
  - Initial equilibrium solver VMEC
  - Localize VMEC code assumptions, so that could use a different equilibrium solver in the future
  - Initial signals magnetic diagnostics
  - Other diagnostics can be added

### VMEC

- Three-dimensional MHD equilibrium, *assumes* closed, nested flux surfaces
  - Can *not* resolve islands and chaotic regions
  - Uses inverse-coordinate representation
  - Spectral representation for angle coordinates
  - Grid representation for radial coordinate
  - Variational principle minimizes radial forces on flux surfaces
  - Both free-boundary and fixed-boundary equilibria
- Fast, robust, widely used throughout the world.
- Parameters to use for reconstruction:
  - Current and pressure profile parameters
  - Pressure scale factor
  - Total toroidal current
  - External currents
  - Total toroidal flux within last closed flux surface

am(i), ac(i) pres\_scale curtor extcur(i) phiedge

13 October 2009

17th ISHW

V3FIT page 4

# General Algorithm

• Minimize deviation between observed and model signals

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i} \left( \frac{S_{i}^{o}(\mathbf{d}, \mathbf{p}) - S_{i}^{m}(\mathbf{p})}{\sigma_{i}} \right)^{2}$$

- Minimize  $\chi^2(\mathbf{p})$ . Parameters  $\mathbf{p}$ , Observed signals  $S_i^o(\mathbf{d},\mathbf{p})$ .
- Model-computed signals  $S_i^m(\mathbf{p})$ , uncertainties in signals  $\sigma_i$ .
- Definitions
  - Normalized parameters  $a_j = p_j / \pi_j$
  - Error vector  $e_i = \left(S_i^o(\mathbf{d}, \mathbf{p}) S_i^m(\mathbf{p})\right) / \sigma_i \qquad \chi^2(\mathbf{p}) = \mathbf{e} \cdot \mathbf{e}$

– Jacobian (unnormalized) 
$$J_{ij} = \frac{\partial S_i^m}{\partial p_j}$$

13 October 2009

17th ISHW

### Minimization Algorithm

- Jacobian (normalized) 
$$A_{ij} = \frac{\pi_j}{\sigma_i} \left( \frac{\partial S_i^o}{\partial p_j} - \frac{\partial S_i^m}{\partial p_j} \right) \qquad \mathbf{A} = \nabla \mathbf{e}$$

- V3FIT uses Quasi-Newton algorithm for new parameters  $\mathbf{A}^T \cdot \mathbf{A} \cdot \delta \mathbf{a} = -\mathbf{A}^T \cdot \mathbf{e}$
- Finite differences to compute Jacobian
  - Small steps in parameter space VMEC converges rapidly
  - Need moderate accuracy in  $S_i^m$
  - Needs well-converged VMEC
  - Does *not* need high radial resolution
- Use Singular Value Decomposition (SVD) on Jacobian
  - Helps avoid large steps in parameter space

# Posterior Sigmas: Confidence Limits on Parameters

- Assume uncorrelated Gaussian distribution of Signals
  - Signal covariance matrix assume diagonal  $C_{ij} = \sigma_i^2 \delta_{ij}$
- Expect nearly Gaussian distribution in parameter space
  - Parameter covariance matrix  $\mathbf{C}_p = (\mathbf{J}^T \cdot \mathbf{C}^{-1} \cdot \mathbf{J})^{-1}$
  - Also called posterior covariance
  - Confidence limit on parameter value  $\sigma_{p j} = \sqrt{(\mathbf{C}_p)_{jj}}$
  - $\sigma_{pj}$  Measures how accurately these signals determine the *j*th reconstruction parameter.

17th ISHW

#### **Reconstruction Illustration**

1.5

Step 0 •

- CTH Equilibrium
- 2 Parameters
  - Total toroidal plasma current
  - Toroidal current profile shape
- 12 Magnetic Diagnostic signals
  - Rogowski, 8-part Rogowski
  - Two flux loops, one magnetic probe



### Reconstruction with Noise

• Simulated signals

 $S_i^{"observed"} = S_i^{\text{model}}(p_0) + \delta S_i$ 

 $\delta S_i$  - Gaussian distributed noise

- If noise is not too large, then:
  - Gaussian distribution of reconstructed parameters
  - $\chi^2$  distribution of  $\chi^2_{min}$  values



13 October 2009

17th ISHW

probability density



# EFIT and VMEC / V3FIT Agree on Forward Problem

- Test equilibrium DIII-D shot **118162.03030**
- Use EFIT profiles for VMEC input
- Mutual inductances between magnetic diagnostics and external coils agree to 5 significant figures.
- 103 Magnetic Diagnostics agree to RMS 0.63%
- Integrated equilibrium quantities agree well:

| Quantity             | EFIT   | VMEC   | Difference |
|----------------------|--------|--------|------------|
| <b>S</b> 1           | 2.124  | 2.120  | 0.21%      |
| S2                   | 0.5135 | 0.5085 | 0.98%      |
| S3                   | 0.7105 | 0.7119 | -0.20%     |
| ${oldsymbol{eta}}_p$ | 0.1905 | 0.1898 | 0.37%      |
| $\ell_i$             | 1.160  | 1.157  | 0.22%      |

# Use V3FIT to Reconstruct DIII-D Equilibrium

- *Experimental* observations of 31 partial Rogowskis and 36 flux loops
- Used 21 reconstruction parameters:
  - 18 F-coil currents
  - PRES\_SCALE overall pressure profile scaling factor
  - CURTOR net toroidal plasma current
  - AC(1) parameter that changes shape of current profile
- Comparison:

| Quantity    | EFIT   | V3FIT  | Difference |
|-------------|--------|--------|------------|
| <b>S</b> 1  | 2.124  | 2.118  | 0.32%      |
| S2          | 0.5135 | 0.5029 | 2.11%      |
| <b>S</b> 3  | 0.7105 | 0.7062 | 0.61%      |
| ${m eta}_p$ | 0.1905 | 0.2022 | -5.79%     |
| $\ell_{I}$  | 1.160  | 1.148  | 1.05%      |

# Use V3FIT to Reconstruct DIII-D Equilibrium

- Good agreement with EFIT reconstruction on parameter values, integrated quantities, and outermost flux surface shape.
- CONCLUDE: V3FIT can use real data to reconstruct equilibria. Reconstructed equilibrium is comparable to EFIT's.

Nucl. Fusion 49 (2009) 075031.



13 October 2009



- Goal: Use V3FIT for routine reconstructions on the Compact Toroidal Hybrid (CTH) at Auburn
- Poster P01-01, Stevenson et al., this workshop
- 25 Signals
  - Three 8-part Rogowski's at toroidal angles:  $\sigma \sim 3\%$ 
    - 18° 1/4 field period
    - 108° 1 1/2 field period
    - 144° 2 field period
  - Limiter (circular)

 $\sigma = 1.0 \text{ mm}$ 

#### • 3 reconstruction parameters

- CURTOR total toroidal current
- AC(1) current profile parameter (changes breadth of profile)
- PHIEDGE total toroidal flux (changes size of plasma)

- VMEC Parameters (Stellarator Symmetric)
  - MPOL=6 Number of poloidal modes
    NTOR=8 Number of toroidal modes
    NS=15 Number of radial grid points
    FTOL=5.E-14 Convergence Parameter
- Six reconstruction iterations:
  - Run time: 206 seconds
- Reconstructed Parameters:

| Parameter | Initial | Reconstructed | Posterior $\sigma$ |
|-----------|---------|---------------|--------------------|
| curtor    | 41,120. | 41,548.       | ± 280.             |
| ac(1)     | +2.000  | -2.561        | $\pm 0.074$        |
| phiedge   | -0.0359 | -0.0499       | ± 0.0004           |

| Step | g-squared |
|------|-----------|
| 0    | 2006      |
| 1    | 1802      |
| 2    | 1393      |
| 3    | 515       |
| 4    | 396       |
| 5    | 388       |
| 6    | 388       |

-

Plasma Response Comparison for Rogowski Coil Set 8PO018



Plasma Response Comparison for Rogowski Coil Set 8PI144



Plasma Response Comparison for Rogowski Coil Set 8PI108



V3FIT Current Profile Modification at 1.66801 s



13 October 2009

17th ISHW

V3FIT page 15

- Final  $\chi^2$  is larger than expected
  - 25 signal 3 parameters, expect  $\chi^2$  near 22
  - Indicative of possible systematic error
- Signal behavior also indicates systematic errors
- Possible corrections for systematic errors:
  - More accurate measurement of mutual inductances
  - Improve model of vacuum vessel currents
  - Allow for broken stellarator symmetry
  - Allow for broken field-period symmetry
- Run time could be improved with better initial choice of reconstruction parameters
- Need to automate the reconstruction process

#### • Motivation

- Which magnetic diagnostics are most useful?
- I wish to improve the measurement of the current profile. What magnetic diagnostics should I add?
- I only have money for one more diagnostic. Where should I put it?
- Magnetic diagnostics break. For which magnetic diagnostics do I need a spare, ready and waiting to put on the machine?
- I'm building a new stellarator. What magnetic diagnostics should I build?

#### Pomphrey, Lazarus et al., Phys Plasmas 14 056103 (2007).

- Design for NCSX
- Database of 2500 free-boundary VMEC equilibria
- Initial 600 trial flux loops, pruned to 225.

• Proposed measure of the effectiveness of a signal:

$$R_{ji} = \frac{d\ln\sigma_{pj}}{d\ln\sigma_i} = \frac{\sigma_i}{\sigma_{pj}} \frac{d\sigma_{pj}}{d\sigma_i}$$

- Logarithmic derivative of the *j*th posterior parameter  $\sigma_p$  with respect to the *i*th signal  $\sigma$
- How much will the *j*th posterior  $\sigma_p$  improve if the noise level on the *i*th signal is reduced?
- With  $\mathbf{C}_p = (\mathbf{J}^T \cdot \mathbf{C}^{-1} \cdot \mathbf{J})^{-1}$ , R is readily computable from the Jacobian  $\partial S_i^m / \partial p_j$ .
- Note:
  - R is dimensionless and non-negative.

$$-\sum_{i(signals)}R_{ji}=1$$

- It is *local*. It only contains information about what happens near a particular point in parameter space.

#### • Preliminary Results:

- CTH Reconstruction
- Signals 1-24 are partial Rogowski's
- Signal 25 is the limiter
- As expected, the limiter is by far the most effective diagnostic for determining phiedge



- Preliminary Results:
  - CTH Reconstruction
  - 24 partial Rogowski's in 3 different toroidal planes



13 October 2009

17th ISHW

# Conclusions

- V3FIT reconstruction algorithm converges as expected.
- V3FIT behaves correctly when noise is added to signals.
- VMEC / V3FIT agrees with EFIT axisymmetric forward problem.
- V3FIT can reconstruct axisymmetric equilibria using real data comparable to EFIT.
- V3FIT is proving useful for stellarator equilibrium reconstruction.
- The Jacobian contains lots of useful information:
  - Posterior parameter confidence limits
  - Signal effectiveness
- Confrontation with real experimental data is leading to improvements in both the V3FIT code and in the magnetic diagnostics.

# Acknowledgements

- United States Department of Energy
- Auburn University
  - Mark Cianciosa
  - Greg Hartwell
  - Jonathan Hebert
  - Jorge Muñoz
  - John Shields
  - Adam Stevenson
- Los Alamos National Laboratory
  - John Finn and Chris Jones

| Parameter      | EFIT    | V3FIT  | V3FIT              | V3FIT                  | EFIT-V3FIT    |
|----------------|---------|--------|--------------------|------------------------|---------------|
| Identifier     | value   | value  | posterior $\sigma$ | posterior $\sigma$ , % | difference, % |
|                |         |        |                    |                        |               |
| $I_{tot}$ (MA) | 1.500   | 1.504  | 0.011              | 0.73%                  | 0.27%         |
| $p_{scale}$    |         | 19140  | 6322               | 33.0%                  |               |
| $a_{c}(1)$     |         | -1.915 | 0.121              | 6.3%                   |               |
| I-F1A (A)      | -5760.3 | -5814  | 301                | 5.2%                   | 0.9%          |
| I-F1B (A)      | -5714.4 | -5664  | 301                | 5.3%                   | 0.9%          |
| I-F2A (A)      | 1988.9  | 2029   | 135                | 6.6%                   | 2.0%          |
| I-F2B (A)      | 2076.6  | 2050   | 168                | 8.2%                   | 1.3%          |
| I-F3A (A)      | 2590.1  | 2530   | 136                | 5.4%                   | 2.3%          |
| I-F3B (A)      | 2627.9  | 2702   | 91                 | 3.4%                   | 2.8%          |
| I-F4A (A)      | 3752.9  | 3849   | 311                | 8.1%                   | 2.6%          |
| I-F4B (A)      | 3553.0  | 3442   | 79                 | 2.3%                   | 3.1%          |
| I-F5A (A)      | 503.8   | 513    | 158                | 30.8%                  | 1.7%          |
| I-F5B (A)      | 627.5   | 799    | 92                 | 11.5%                  | 27.3%         |
| I-F6A (A)      | -1731.8 | -1828  | 135                | 7.4%                   | 5.6%          |
| I-F6B (A)      | -1686.0 | -1755  | 134                | 7.6%                   | 4.0%          |
| I-F7A (A)      | -8101.9 | -8048  | 96                 | 1.2%                   | 0.7%          |
| I-F7B (A)      | -8277.9 | -8244  | 142                | 1.7%                   | 0.4%          |
| I-F8A (A)      | 970.9   | 890    | 100                | 11.2%                  | 8.3%          |
| I-F8B (A)      | 991.1   | 861    | 86                 | 10.0%                  | 13.1%         |
| I-F9A (A)      | 1246.3  | 1333   | 78                 | 5.8%                   | 7.0%          |
| I-F9B (A)      | 1312.0  | 1383   | 64                 | 4.6%                   | 5.4%          |
| $\chi^{2}$     | 14.7    | 4.9    |                    |                        |               |

13 October 2009