

Energy and Particle Balance under boron and lithium coated walls in TJ-II

(searching for specific Li effects)

Francisco Tabarés and the TJ-II Team

Laboratorio Nacional de Fusión CIEMAT

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

F.L. Tabarés et al

Outline

- Background
- Energy Balance
- Profile evolution and control
- Impurity production
- Conclusions

GOBIERNO DE ESPAÑA E ENNOVACIÓN Viternalógica Viternalógica Viternalógica

Background

- Two years of operation of TJ-II under Li walls (first report at ISHW Toki) : ~6000 shots
- Reference campaign with B walls: one NBI+ ECRH
- Improvement of coating lifetime by underlying B coating
- Presently, refreshing of Li coating from containers under vacuum: up to 6 coating cycles
- Experiments with B coating on top of Li (2009)

Main results: (F. Tabarés et al PPCF 08, J.Sánchez et al, NF 2009)

- Highly improved density control
- Routine operation under 2 NBI heated plasmas
- -Transition to H mode (T. Estrada et al. I-23, M.A. Pedrosa, I-27 Thursday)
- Improved Confinement/E content (E.Ascasibar et al, P2-04, TJ-II poster PD-04)
- Development of peaked Profiles (this talk)
- Decreased LI sputtering yield (this talk)

Global E Confinement : B vs Li

F.L. Tabarés et al

🏽 🚮 🐼 🐨 📰 🕅

🐠 🚰 😵 🖽 🎦 🐌 🛛 12:25

Particle inventory Li vs B

F.L. Tabarés et al

0-D Energy Global Balance: B vs Li

Similar values of Te and Ti for both coatings

Energy Losses

Similar values of electron and ion energy losses in both coatings

1-D effects: Plasma Profiles

same global parameters but... non collapsing Prone to collapse ne (10⁻¹⁹ m⁻³), Wdia (kJ), SRX (a.u.) ne (10⁻¹⁹ m⁻³), Wdia (kJ), SRX (a.u.) Shot # 17941 Shot # 17931 250 5 250 5 Prad LITHIUM LITHIUM ne 200 200 Prad (kW) Prad (kW) **BELL** DOME 3 3 Wdia Wdia 100 100 2 SXR SXR 50 50 Pnbi 0 1200 1050 1100 1150 1050 1100 1150 1200 time(ms) time(ms) central impurity edge thermal peaking 0,5 instability 1 DOME 17941 17931 BELL 0,8 0,6 0,4 4 emissivity (Wcm⁻³) ne (10²⁰ 0.25 ́Че 0,3 0,6 A eff 0,4 3 'ef 0.13 э_ ____ 0,2 0,4 0,2 2 0.2 0,1 Zeff 1 0 0 0 0,2 0,6 0 0,4 0,8 -0,5 0,5 -0.5 0,5 0 0 r eff r eff r eff

F.L. Tabarés et al

emissivity (Wcm⁻³)

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

Controlling the plasma profile by small puffing-1

F.L. Tabarés et al

Controlling the plasma profile by small puffing-2

F.L. Tabarés et al

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

Edge effects

Correlation between edge cooling and transition to broad profiles

No difference (up to 15% seeding) in Ne/H_2 vs pure H_2 injection (?)

No significant increase of ne at the edge (but seen in ST profiles)

F.L. Tabarés et al

Effect of gas pulse: Broadening of density profile+ electron cooling at r> 0.6

Â

Impurity Generation: Lithium Sputtering studies

Specific diagnostics:

- Li emission at 671nm at the edge *Rel. Calibrated in situ*

- $6 H\alpha$ monitors
- Array of Li+ emmision at the edge: r/a: 1.05 to 0.75
- Edge ECE (ECRH plasmas)
- Supersonic He beam for ne and Te at the edge
- NPA for CX Ti determination
- ECRH and NBI plasmas: up to 800 kW heating power
- H and He plasmas
- Li/B and B/Li coatings -

+ Laboratory experiments (sputtering and recycling)

Li sputtering yield in TJ-II

- Φ_{Li}=I₆₇₁.S/XB₆₇₁
- $\Phi_{H} = I_{Ha}.S/XB_{656}$
- $\Phi_{Li} / \Phi_{H} = I_{Li} / I_{Ha} . (0.2/15)$
- I_{Li}/I_{Ha}(exp)~0.33, Φ_{Li}/ Φ_H ~2%
- But: R_H~10%!!
- So $\Phi_{\rm H}$ ~10x.,
- Li/H ~2.10⁻³!!
- $Li/H = S_H/1-S'_{ss}, S'_{ss} = S_{ss}-(1-Rn)$
- Sputt theoretic: $3.3.10^{-2}$ (2/3 ions)

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

F.L. Tabarés et al

Results

Previous reports

a: 0-D model

• $dX/dt = A.\Phi_H.S_H-X/\tau_p-X/\tau_p.S_{ss}=0$

 $x/n_e = S_H / 1 - S_{ss}$, with $S_{ss} = S_x - (1 - R_n)$,

Rn=self-reflexion coeff, SH, Sss dep on E and angle of incidence

F.L. Tabarés et al

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

NPA Ti profiles

Similar Ti radial profiles for B wall

R. Balbín et al, EPS 2005

F.L. Tabarés et al

Layer (B/Li) mixing effects

Li sputtering yield lower by ~2 after He GDC

Boron layer (~50 nm) on top of Li

Conclusions

• Similar Parameters for Global E balance found for Li and B walls at ne< 2.5x10¹⁹ m⁻³

 Self development of two different plasma radial profiles under Li walls at high ne

•Transition between them triggered by short gas pulse

- •NBI absorption /central heating modified by plasma profile (?)
- •No evidence of flatter Ti profiles for Li walls yet found
- •Low sputtering yield for Li associated to material mixing
- •Good recycling found even by covering the Li layer with B

F.L. Tabarés et al

Deposición de Litio

F.L. Tabarés et al

mejora con el tiempo de uso!

Control de la rampa de densidad

New extended operational window

Energy and Particle balance studies in the full lithiated TJ-II stellarator 17th ISHW, Princeton Oct 2009

La emisión del Fe baja mucho (no se ioniza lo suficientemente rápido). Se mantienen altas la del O (con el filtro de 8µm) y la del Ne

Evolución temporal de un pulso de Ne.

Pulso de impurezas de 3ms observado Difc=2000 cm^2/sec Vdac=-2 2D/A Vex=2 (V(R)=V(A)*(R/A)**VEX) Flx=1e10 t0=0.001 y dt=0.002

H2-Ne

1100

1120

1114.92

1140

5.41482

1160

RX101 RX101 RX102

RX102

rx1.lee #22088#22098

Experimentalmente la penetracion del pulso de Ne parece verse en los canales exteriores como un aumento de señal que se propaga hacia el centro. Mientras, los canales mas interiores o no aumentan nada o incluso disminuyen antes de que el Ne puda llegar al centro

Simulación de la contribución a la emisión r x blandos a través de varios filtros y distintas impurezas Laboratorio

Nacional

Fusión

Ciemat

Centro de Investigaciones Energéticas, Medioambientale

y Tecnológicas

GOBIERNO DE ESPAÑA E INNOVACIÓN

t0=0.001 y dt=0.005