
14 Oct. 2009, S. Masuzaki1/18

Edge Heat Transport
in the Helical Divertor Configuration

in LHD

S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu, H.
Yamada, A. Komori and LHD Experiment group

National Institute for Fusion Science



14 Oct. 2009, S. Masuzaki2/18

MOTIVATION

• Understanding of heat and particle transport in edge region
is essential for divertor design in fusion reactor.

– Complex field line structure in which stochastic region,
islands and laminar region coexist exists in edge region
in heliotron-type devices, stellarators and tokamaks with
RMP.

– Different mechanism which determines divertor heat and
particle flux profiles from poloidal divertor tokamaks may
exist.

• In this study, we focus on profiles of heat and particle flux on
helical divertor in LHD heliotron.
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OUTLINE

• Edge magnetic field line structure in LHD

• Relation between the structure and profiles of
particle and heat load on divertor

• Transport change with Te rise

• Summary
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Edge field line structure in LHD
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•Helical divertor SOL has three dimensional
structure.

•In the HD SOL, the stochastic region, islands
and laminar layer co-exist.

•The fine structure in the HD SOL varies with
the operational magnetic structure.



14 Oct. 2009, S. Masuzaki5/18

Edge field line structure in LHD
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Divertor leg
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Divertor Plate Array

Divertor plate arrays and diagnostics
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• Langmuir probes and
thermocouples are
embedded in divertor plates

• An IR camera observes
inboard divertor plates

• 1,700 water cooled graphite
tiles

IR camera
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Particle Flux Profiles on a Divetor Plate
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Heat Flux Profiles on a Divertor Plate

• Heat flux profiles were reconstructed by using temperature rise profiles
at the beginning of NB injection. Semi-infinite assumption was applied
neglecting three dimensional heat diffusion.
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Heat and Particle Deposition Profiles on divertor
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Change of heat flux profile during discharge
(Rax=3.60m)

• Such change of heat flux profile  has been observed frequently.
• Particle flux profile is also changed.
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Application of the 3D edge transport codes :
EMC3-EIRENE

Physics
 • standard fluid equations of
   density, momentum, energy of ion & electron
 • simplified fluid model for impurities
   (not for present analysis)
 • kinetic model for neutral gas

Geometry
 • fully 3D for plasma, divertor plates, baffles and wall
 • ergodic or non-ergodic B-field configurations

Numerics
  • Monte Carlo technique on local field-aligned vectors, piecewise parallel
    integration for isolation of the small ⊥ from the large II-transport (⊥/II~10-8)
 • new Reversible Field Line Mapping (RFLM) technique,
    Finite flux tube coordinates for B-field line interpolation

Coupled self-consistently
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Reproduce of the profile change using
EMC3-EIRENE code

• Blue profile in experiment was reproduced by calculation.

• Red profile was not well reproduced. But increasing of diffusion
coefficient flatten the profile in calculation.

• Heat load decreases with increase diffusion coefficient.
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At 10.5U probe position

• Heat load (and particle load)
increases with increase of diffusion
coefficient at this position.

• Heat and particle transfer from
“long” flux tube to laminar region is
enhanced.
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• The ratio of total Isat at 10.5U
probe to that at 6I probe
increase during the profile
change (yellow hatched).

• Consistent with calculation
assuming larger D and χ.

experiment
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In the case of Rax=3.75m

• Profiles of heat and particle flux
are not largely changed by
plasma conditions.

• In experiment, ratio of peak heat
flux on the divertor to heating
power is large for relatively low
Te discharges (blue line).

• In calculation, the ratio increase
with decreasing of D and χ.
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Less collision looks to enhance the heat transfer from
long flux tube to laminar region

• Normalized heat flux vs. collision mean free path (1016Te
2/ne)

around the last closed flux surface.

• Decreasing of the normalized heat flux suggests that heat
transfer from “long” flux tube to laminar region is enhanced.
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Do diffusion coefficients increase with
increasing of Te?

Te Isat@6I
Isat@10.5U

Te

Te flattening of heat flux profile@6I

Pdiv@6I

Heating power

Pdiv@6I

Heating power
Calculations with
increasing D and χ

Observations in discharges
with Rax=3.75m

Observations in discharges
with Rax=3.60m

consistent
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Summary

• Profiles of heat and particle load on divertor plates
are roughly determined by magnetic field line
structure.

– Though the edge field line structure is complex,
the profiles can be roughly predicted even in the
complex e.

• Heat and particle transfer from “long” flux tube to
laminar region look to be enhanced with Te rise
rather than increasing collisionality.
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Closed Helical Divertor will be installed (2/10
sections) in 2010

Present divertor Closed divertor
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Edge Te profiles
D and χ were estimated by fitting of calculation to

experimental data
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These results suggest that
the cross-field transport
coefficients have
temperature dependence,
and they also depend on
density weakly.


