Transition to helical RFP state and associated change in magnetic stochasticity in a low-aspect-ratio RFP

S.Masamune

Kyoto Institute of Technology, Kyoto 606-8585, Japan

A.Sanpei, R.Ikezoe, T. Onchi, K.Oki, T.Yamashita, Y.Konishi, M.Nakamura, M.Sugihara, A.Higashi, H.Motoi, H. Himura, N.Nishino¹, R.Paccagnella², A.Ejiri³, H.Koguchi⁴)

Kyoto Institute of technology, Kyoto, Japan ¹⁾Hiroshima University, Higashi-hiroshima, Japan ²⁾Consorzio RFX, Padova, Italy ³⁾University of Tokyo, Kashiwa, Japan ⁴⁾National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

REversed field pinch of Low-Aspect-ratio eXperiment

• *R*/*a* = *A* = 2 (51 cm/25 cm)

 Optimization in progress

Kyoto Institute of Technology

Normal RFP discharges established

Density measurement with μ -wave interferometer Density regime at flat-topped I_p phase: $1 - 10 \times 10^{18} \text{m}^{-3}$

Outline

- Motivation to lowering A in the RFP
- Characterization of magnetic fluctuations in RELAX
- Helical structure in RELAX
- Magnetic structure and SXR emissivity in Helical Ohmic state
- Field line trace for RELAX plasmas
- Summary and future work

RFP configuration and its characteristics

Peaked current profile \rightarrow tearing mode unstable

Densely spaced mode rational surfaces \rightarrow importance of nonlinear coupling

Two solutions to avoid magnetic chaos

(courtesy of P. Martin)

Lower *A* changes *q* profile - lower n of dominant m=1 modes

Goal of RELAX experiment

- Experimental study on advantages of low-A RFP configuration
 - Improved confinement with QSH for achieving high beta
 - Experimental identification of bootstrap current (targer parameters:

$$T_{\rm e}$$
~300eV, $n_{\rm e}$ ~4 × 10¹⁹m⁻³ at $I_{\rm p}$ ~100kA)

Magnetic fluctuation level depends on toroidal field reversal with transition to Helical Ohmic state at very shallow reversal

Fluctuation level of odd components

deep reversal case

Growth of dominant modes is related to mode rotation

m=1/n=4 mode behavior:

➤Longer QSH period for slower rotation

Shorter QSH period with higher spectral index N_s for faster rotation

Quasi-periodic growth of a single dominant helical mode (m=1/n=4)

Magnetic island structure of QSH with m=1/n=-4

Rotating helical structure observed with high-speed camera - movie -

Tangential image:

Following the initial bright phase, some structure starts to rotate, converging to a simple helix with m/n=1/-4.

m=1/n=-4 helix

Helical structure observed also in SXR pin-hole camera image

Pin-hole images with different phase

Exposure: 5µs

Simulated image with single island

Rotating Helical Ohmic Equilibrium state indicated - A large-scale magnetic field profile change -

- Quasi-periodic oscillation between reversed and non-reversed profiles at a fixed point
- Similar large-scale oscillatory behavior in B_r and B_{θ}

Evidence of Helical Ohmic Equilibrium state

- Symbols: measured profiles with radial array of magnetic probes.
- Solid lines: Helical Ohmic equilibrium solution (Paccagnella (2000))
- Shafranov shift $\Delta/a \sim 0.2$.
- The helical structure rotates at a frequency of ~10 kHz.

Axisymmetric components

m=1 helical components

Evolution of asymmetric SXR emissivity profile

impact parameter (cm)

Field line trace with ORBIT code shows larger area of less stochastic region in deep-reversal case

3-D equilibrium and 3-D

eigenfunctions are needed

1-D equilibrium , linear eigenfunction in cylindrical geometry in ORBIT

Summary

- RFP plasma with MHD properties characteristic to low-A configuration attained in RELAX
- Simple rotating helical structure observed
- Helical Ohmic Equilibrium state demonstrated
- 3-D equilibrium and stability analysis needed for further studies on magnetic structure of Helical Ohmic Equilibrium state

• Discharge performance improvement:

- *I*p~100kA, τ : ~3ms => 5ms (within present capability)

- Static helical perturbation and feedback control Further improvement of Helical Ohmic state will require improved magnetic boundary:
 - feedback control system

Another means for confinement improvement (current profile control, e.g.) may be necessary

Helical Ohmic Equilibrium Solution

Grad-Shafranov equation with helical symmetry

$$\Delta_{\rm h} \chi = \frac{1}{f} \frac{\partial}{\partial r} \left(f \frac{\partial \chi}{\partial r} \right) + \frac{1}{rf} \frac{\partial^2 \chi}{\partial u^2} = \left(c - \frac{\mathrm{d}g}{\mathrm{d}\chi} \right) g(\chi) - \frac{\mathrm{d}p}{\mathrm{d}\chi} (m^2 + k^2 r^2),$$

$$f = \frac{r}{m^2 + k^2 r^2}, \quad g = \frac{-2mk}{m^2 + k^2 r^2}$$

$$\lambda(r) = \frac{\mathbf{j} \cdot \mathbf{B}}{B^2} = \frac{\mathrm{d}g}{\mathrm{d}\chi} + \frac{g}{B^2} \frac{\mathrm{d}p}{\mathrm{d}\chi}$$

Ohm's law with helical symmetry $(\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B} = \eta \boldsymbol{j})$ $E_0 \langle B_z \rangle_{\chi} = \eta(\chi) \left(\tilde{\lambda}(\chi) \langle B^2 \rangle_{\chi} + g \frac{\mathrm{d}p}{\mathrm{d}\chi} \right),$ $\hat{\lambda} = \frac{\mathrm{d}g}{\mathrm{d}\gamma} = \frac{\boldsymbol{j} \cdot \boldsymbol{B}}{B^2} - \frac{g}{B^2} \frac{\mathrm{d}p}{\mathrm{d}\gamma}$

Contours of helical flux function

Theta=1.78, F=-0.06, beta=0.1