Energetic particle transport in NBI plasmas of Heliotron J

17th ISHW, 12-16, Oct. 2009, PPPL

<u>S. Kobayashi,</u> K. Nagaoka^a, S. Yamamoto, T. Mizuuchi, K. Nagasaki, H. Okada, T. Minami, S. Murakami^b, H. Y. Lee^c, Y. Suzuki^a, Y. Nakamura^c, Y. Takeiri^a, M. Yokoyam^a K. Hanatani, K. Mukai^c, K. Hosaka^c, S. Konoshima, S. Ohshima, K. Toushi and F. Sano

> Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan ^aNational Institute for Fusion Science, Toki, Gifu, 509-5292, Japan ^bGraduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan ^cGraduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0011, Japan kobayashi@iae.kyoto-u.ac.jp

Outline

- 1. Introduction
- 2. Heliotron J device and configuration characteristics
- 3. Fast ion transport induced by energetic-ion-driven MHD activities
- 4. Summary

Acknowledgements

- This work was supported by NIFS/NINS under the NIFS Collaborative Research Program (NIFS04KUHL005, NIFS04KUHL003, NIFS04KUHL006, NIFS05KUHL007, NIFS06KUHL007, NIFS06KUHL010, NIFS07KUHL011, NIFS07KUHL015 and NIFS08KUHL020) and under a project sponsored by the Formation of International Networl for Scientific Collaborations.

- This work was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotio of Science No. 20686061.

Introduction (1)

Physical Issues in energetic particle confinement for reactor

- Good energetic particle confinement is required for self-ignition \ Reduction in trapped particle loss by tailoring magnetic configuration
- Interactions between energetic ions and fast-ion-driven MHD activities \ Study the behavior of anomalous transport of energetic ions
 - * Mechanisms of fast-ion losses in tokamak AEs have been discussed^{1,2} Dependence of radial transport of the fast-ion on magnetic fluctuations

Direct measurement of lost fast-ions

- 1. Scintillator-based lost fast-ion probe (LIP)³⁻⁶
- 2. Directional Langmuir probe (DLP)⁷
 - In CHS⁷, a hybrid directional Langmuir probe (HDLP) system has been applied for lost-ion measurements in Alfvénic modes (TAE,

EPM).

- [1] E.M. CaroFigașt tip, poshayi oroingide and outside 15, 6558 (2008).
- [3] D.S. Darrow et al, J. Plasma Fusion Res. Ser. 1 362 (1998). [4] M. Isobe et al., NF 46 S918 (2006).
- [5] A. Werner et al., Proc 27th EPS Conference Budapest, 2000 ECA Vol. 24B (2000) 988.
- [6] A. Weller, et al., POP 8 931 (2001). [7] K. Nagaoka, et al., PRL. 100 065005 (2008).

Introduction (2)

In shearless helical/stellarator configurations. Global Alfvén eigenmode (GAE) is a candidate of most unstable mode \ Observation in Heliotron J^[8] and W7-AS^[5,6], \ Lost fast-ion measurement in W7-AS using LIP^[5]

In Heliotron J,

Observed GAE has a dependence on magnetic configurations.
 *Strong bursting GAEs appeared under the condition where the energetic particle confinement was fairly good.

- Recently, HDLP system is installed into Heliotron J^[9] to investigate

- Anomalous fast-ion transport through the consequence of the interaction with GAE
- Response of fast-ion transport to mode amplitude and its radial structure
- [5] A. Werner et al., Proc 27th EPS Conference Budapest, 2000 ECA Vol. 24B (2000) 988.
- [6] A. Weller, et al., POP 8 931 (2001).
- [8] S. Yamamoto, et al., Fusion Sci. Tech., 51, 93 (2007).
- [9] K. Nagaoka, et al., Proc. Int. Cong. Plasma Phys. 2008 (2008) BEH.P2-156.

Coherent magnetic fluctuations in NBI plasmas

After t = 0.21 s, the coherent magnetic fluctuations having the frequencies $f_{exp} = 50 \sim 200$ kHz and $m \sim 2/n = 1$ and $m \sim 4/n = 2$ a observed.

The observed modes propagate in the diamagnetic drift direction of energetic in Amplitude of the observed MHD instabilities are about $b_{\theta}/B_{t} \sim 10^{-6}$.

Shear Alfvén spectra & resonance condition⁺

We compared the observed frequencies with shear Alfvén spectra using CAS3D3* (in 2D)

The observed frequencies exist on above and below the shear Alfvén continua, respectively.

Frequency of discrete mode agrees with that of observed mode (n = 1) \ global AEs (GAEs)

Resonance conditions for n = 1 GAEs

GAEs with m/n = 2/1 have been observed under the resonance condit of $v_{b//}/v_A > 0.25$ by changing n_e (observed GAEs are excited via sideband excitation.

*S. Yamamoto, et al., FS&T, 51, p93 (200 * C. Nührenberg, Phys. Plasmas 6 p137(1

Introduction (2)

In shearless helical/stellarator configurations.

- Global Alfvén eigenmode (GAE) is a candidate of most unstable mode \ Observation in Heliotron J^[8] and W7-AS^[5,6],
 - **** Lost fast-ion measurement in W7-AS using LIP^[5]

In Heliotron J,

- Observed GAE has a dependence on magnetic configurations.
 *Strong bursting GAEs appeared under the condition where the energetic particle confinement was fairly good.
- Recently, HDLP system is installed into Heliotron J^[9] to investigate
 - Anomalous fast-ion transport through the consequence of the interaction with GAE
 - Response of fast-ion transport to mode amplitude and its radial structure
- [5] A. Werner et al., Proc 27th EPS Conference Budapest, 2000 ECA Vol. 24B (2000) 988.
- [6] A. Weller, et al., POP 8 931 (2001).
- [8] S. Yamamoto, et al., Fusion Sci. Tech., 51, 93 (2007).
- [9] K. Nagaoka, et al., Proc. Int. Cong. Plasma Phys. 2008 (2008) BEH.P2-156.

Heliotron J device and configuration characteristics

- R/a=(1.2/0.17m), L/M=1/4, |B| < 1.5T
- Low magnetic shear, ($\Delta \iota/\iota < 0.04$), well (>0.5%),

- Configuration charcteristics can be controlled by changing the five sets of the coil curren (Helical, Toroidal A (TA), Toroidal B (TB) and Two vertical coils (AV, IV)

Heliotron J device and configuration characteristics

$\varepsilon_{\rm b}$ control has an effect on energetic particle confinement

rence of Bursting GAE in NB heated s (#30014) m $\varepsilon_{\rm b}$ (I_{TA}:I_{TB} = 5:2), $\iota(a)/2\pi = 0.54$ 120 $V_{ACC} = 23kV, P_{NBI} = 570kW$ Deuterium 80 al Beam : Hydrogen 7 x 10^{19} m³, T_i ~ 300eV ~ 0.5 (> 0.2 : m/n=2/1 sideband excitati

- The frequency of GAE chirps down quickly from 70 to 40kHz.
- m/n = 2/1 mode propagates in the ion diamagnetic drift direction.
- *Note that no strong bursting GAEs have been observed in the low bumpiness configuration.

Hybrid Directional Langmuir Probe (HDLP) installed in Heliotron J*, **

Targets

Advantages

- Simultaneous measurements of particle and heat fluxes (equipped TC)
- Enable to change insertion depth and poloidal angle (0 to -5 deg.)
- Probe angle in z-\$\$\$\$ plane is flexible (set angle 20 degrees in this experiment).

To align HDLP probe tips to magnetic field

• Almost separate Co- and Ctr-going ion fluxes, however, some highly and vertically accelerated particles are still detectable with the opposite side probe

*K. Nagaoka, et al., Plasma Fusion Res. 1, 005 (2006). **K. Nagaoka, et al., Proc. ICPP2008, P2-156 (2008).

Collisionless orbit calculation for beam ions.

- Poincaré plot of Co-injected beam ions at the cross section of HDLP on the cross section at HDLP installation position.
- Capable to measure both Co-injected beam ions and lost ions to wall. *Usable for measuring heat flux of re-entering particles.**

** K. Nagaoka, et al., Rev. Sci. Inst., 79 10E523 (2008).

Bursting GAEs in Heliotron J ($\iota(a)/2\pi = 0.54$)

#30014 Wavelet analysis

- Observation of ion fluxes synchronized with GAE burst using HDLP.

- Sensitive response in Co-directed probe to the GAE bursts. (High coherence > 0.8 during bursts)

- Small response (~1/5) of CTR-directed probe in growth phase of burst (disappeared quickly after peak of magnetic fluctuation) \ before re-distribution of fast ions
- No significant oscillation of fast ion flux outside LCFS

Fast ion flux as a function of mode amplitude in GAE burst 3 :r/a=0.87 Co-directed δl_{IS} (A.U.) 2 $\delta I_{S}(Co) =$ $0.9 x \delta B$ **Ctr-directed** 0 2 3 0 δB (A.U.)

- Comparison of amplitude between ion flux $(\delta I_{\rm IS})$ at Co-directed probe and magnetic probe signal $(\delta B_{\Theta}$:mounted on V.V) during GAE bursts.
- For Co-directed probe, $(\delta I_{\rm IS})$ increases with δB_{Θ} linearly.

\ indicates convective oscillation*

$$\mathbf{P}_{i}^{\prime} = \frac{\partial \Gamma_{\text{fast ion}}}{\partial r} \cdot \mathbf{S}_{r}^{\prime} = \frac{\partial n_{\text{fast ion}}}{\partial r} \cdot V_{\text{fast ion}} \cdot \frac{\mathbf{B}_{\text{GAE}}^{\prime}}{B_{\text{fast ion}}}$$

• Correlation in Ctr-directed probe is not clear

*K. Nagaoka, et al., Proc. ICPP2008, P2-156 (2008).

- Radial profile of fast-ion flux normalized by amplitude of magnetic fluctuation
- Fast-ion response decreases with minor radius.
- No significant fast-ion bursts outside LCFS (consistent with convective transport

Characteristics of ion flux with Ctr-directed probe

Ion flux measured by Ctr-directed probe

- Clear response in growth phase of burst
 Under a high beam-ion pressure
 condition before re-distribution of fast
- Different phase from MP and Co-ion flu

Two candidates for cause of bursting ion

- Resonant oscillation of bulk-ions
- Pitch angle scattering of fast-ions

In this condition, Ctr-directed probe has a small sensitivity to Co-going hig energy particles with peculiar pitch angle. (20% of 23keV ions with pitch angle of 130 deg.)

In that case, pitch angle of injected beam ions are around 160 deg. \ satisfying resonance condition of m/n=2/1 through sideband excitatio

Summary

We investigated ion transport due to Global Alfvén Eigenmode in NBI plasmas of Heliotron J.

- Bursting GAEs were observed in NBI plasmas of Heliotron J under the configurations that the energetic particle confinement was fairly good.

- In the case of edge rotational transform of 0.54, the GAE frequency chirped down from 70-40kHz with m/n=2/1 mode under the condition of $v_{b//}/v_A \sim 0.5$, which was expected to be excited by the sideband excitation.

- Co and Counter directed ion fluxes under GAE bursts have been observed with HDLP...

 $\$ Enable direct measurement of the resonant ion transport inside LCFS - The amplitude of the co-directed signal is proportional to δB , considered to be convective resonant transport.

- while that of the ctr-directed probe, high coherent oscillation was observed in the earlier phase of GAE bursts, indicating ion-flux transport before the re-distribution of fast ion due to GAE.

- In order to understand the phenomena, further experiments and measurements are required. i.e. velocity distribution measurement

Extend configuration in ε_{b} - ε_{t} space

- Control of Fourier component is key issue for energetic particle (Neo-classical) confinement (extend operation space in bumpiness (ϵ_b) as well as toroidicity (ϵ_t) (progress optimization

- Phase relations of Co- and Ctr-ion fluxes to GAE bursts (Mirnov signal on V.V)
- Phase of two signals are different from GAE bursts and each other

(Co : φ ~ 90-180 deg, Ctr : φ ~ 200-270 deg)

Effectiveness of ε_b (in ICRF plasmas)

An ICRF pulse of 23.2 MHz or 19 MHz is injected into an ECH target plasma where Ti(0) = 0.2 keV, Te(0) = 0.8 keV and $= 0.4 \times 1019 \text{ m}$ -3. ICRF injection power is 250-300 kW.

• In high bumpy case, the ion flux is measured up to 34 keV at the pitch angle of 120 deg.

• In the medium and the low cases, the change in energy spectrum is small. In low bumpy case, the fast ion flux is increased continuously towards 90 deg.

Observation of bursting GAE in high ϵ_b configuration⁺

- GAEs have been observed in seve magnetic configurations in NBI plasmas of Heliotron J, and, strong bursting GAE has been observed in high and medium ε_b configurations +S. Yamamoto, et al., FS&T, 51, 93 (20)

- Bursting GAEs ($m \sim 4/n = 2, f_{exp} =$ ~70 kHz) with rapid frequency chirping.

 Some plasma parameters such as and T_e (SX foil) are simultaneously modulated with the bursting GAEs \ indicates that GAE would affect energetic ion transport.

Change in phase relation keeping a certain gap

-Temporal change in phase relation is similar to each other, with keeping a certain difference around 100deg.

\ Require pitch angle distribution measurements by rotating HDLP

Energetic ion transport

- Effectiveness of ϵ_{b} on energetic ion transport in NBI and ICRF heated plasmas.

- Extend operational regime in ϵ_{b} - ϵ_{t} space. (Progress optimization study

