
Turbulent transport varies on a flux surface

Flux tube aligned poloidal array (64 Langmuir probes)

Measurement of the ion-saturation current Ii,sat and floating potential φf particle transport

Scale resolved drift wave dispersion relation and linear growth rate 

Theory:

Dispersion relation:

Growth rate:

Measurement:

spatially resolved

time series from

Langmuir probes

Simultaneous measurement of turbulent transport at two toroidal
positions

Measurement with two 64-Langmuir-probe-arrays (flux tube aligned)

Different behaviour of transport at different positions will show the influence of magnetic field geometry

Poloidally resolved transport studies

Introduction
The three-dimensional structure of the stellarators magnetic configuration strongly affects the plasma dynamics. 
In particular, the magnetic field geometry influences the characteristics of plasma turbulence. In low-temperature

plasmas in the torsatron TJ-K, fluctuation amplitudes and turbulent transport are compared with the relevant 
parameters of the magnetic field geometry as magnetic curvature and magnetic shear. The general properties of 

the turbulence in TJ-K agree with drift waves. However, the influence of the magnetic configuration has been
found in the turbulent transport level, which seems to be sensitive to curvature effects. Measurements on a flux

surface in the poloidal cross-section show maximum growth rates, increased fluctuation amplitudes and 
maximum transport in the region of bad curvature.
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Summary
Fluctuation amplitudes of φf and Ii,sat, the turbulent transport levels, and the measured growth rates have

local maxima in the region of bad curvature (κn< 0).

Additionally, a small shift of this maximum to the top of the poloidal cross section is observed. 

This is possibly caused by influences of the geodesic curvature or magnetic shear.

Use of a second poloidal array at an other toroidal position and comparison with theoretical growth rates

(e.g. Nasim et al. PPCF 46 (2004) ) will elucidate the influence of normal and geodesic curvature, and 
(integrated) local magnetic shear on drift wave turbulence.

contact: birkenmeier@ipf.uni-stuttgart.de

Geometry of the magnetic field
Parameters vary on a flux surface

Magnetic field strength |B|

Normal curvature

Geodesic curvature

Integrated local magnetic shear

Local magnetic shear
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Torsatron TJ-K
Major plasma radius: R = 0,6 m

Minor plasma radius: a = 0,1 m

Magnetic field: 48 mT ≤ B ≤ 300 mT

Electron temperature: T
e 
≈ 10 eV

Ion temperature: T
i
≈ 1 eV

Electron density: n
e 
≈ 5 ·1017 m-3

Working gases: H, D, He, Ne, Ar

Iota: 0.13 – 0.4

Pulse Duration: up to 45 min

Poloidal Asymmetry

Dispersion relation and growth rates

Poloidally resolved drift wave growth rate 

Wavelet-analysis applied to probe data yields poloidal

resolution of the growth rate

Growth rate has maximum values in the region of bad 
curvature

Additionally a small shift to the top side
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Measurement

LFS

ϕ ϕ ϕ ϕ = 10° ϕ ϕ ϕ ϕ = 30°
r/a = 0.81,  Iv / Ih = 57 %
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