

Geometrical Magnetic Field Effects on Turbulent Transport

G. Birkenmeier, M. Ramisch, A. Köhn, P. Manz, N. Mahdizadeh, B. Nold, and U. Stroth Institut für Plasmaforschung, Universität Stuttgart, D-70569 Stuttgart

contact: birkenmeier@ipf.uni-stuttgart.de

Introduction

The three-dimensional structure of the stellarators magnetic configuration strongly affects the plasma dynamics. In particular, the magnetic field geometry influences the characteristics of plasma turbulence. In low-temperature plasmas in the torsatron TJ-K, fluctuation amplitudes and turbulent transport are compared with the relevant parameters of the magnetic field geometry as magnetic curvature and magnetic shear. The general properties of the turbulence in TJ-K agree with drift waves. However, the influence of the magnetic configuration has been found in the turbulent transport level, which seems to be sensitive to curvature effects. Measurements on a flux surface in the poloidal cross-section show maximum growth rates, increased fluctuation amplitudes and maximum transport in the region of bad curvature

48 mT ≤ *B* ≤ 300 mT

 $T_e \approx 10 \text{ eV}$

n_e≈ 5 ·10¹⁷ m⁻³

H. D. He. Ne. Ar

T ≈ 1 eV

0.13 - 0.4

up to 45 min

Torsatron TJ-K B = 0.6 m

- Major plasma radius: Minor plasma radius: *a* = 0,1 m
- Magnetic field:
- Electron temperature
- Ion temperature:
- Electron density: Working gases:
- lota:
- Pulse Duration

Poloidal Asymmetry

Turbulent transport varies on a flux surface

Flux tube aligned poloidal array (64 Langmuir probes)

• Measurement of the ion-saturation current $l_{i,sal}$ and floating potential ϕ_{f} particle transport $\Gamma = \langle \tilde{n} \tilde{v}_{r} \rangle_{i}$

Dispersion relation and growth rates

Scale resolved drift wave dispersion relation and linear growth rate

Poloidally resolved drift wave growth rate

- Wavelet-analysis applied to probe data yields poloidal resolution of the growth rate
- · Growth rate has maximum values in the region of bad curvature
- Additionally a small shift to the top side

1.6×10

-1.0

I ES

0.5 0.0 #(+)

1.0

ີ້ ຊຸ 1.0×10

Geometry of the magnetic field Parameters vary on a flux surface

- Magnetic field strength |B|
- Normal curvature $K_n = \vec{K} \cdot \left(\frac{\nabla \rho}{|\nabla \rho|} \right)$
- $\kappa_{g} = \vec{\kappa} \cdot \left(\frac{\nabla \rho}{|\nabla \rho|} \times \vec{e}_{\parallel} \right)$ Geodesic curvature
- Integrated local magnetic shear $\Lambda = \frac{g^{\rho\xi}}{a^{\rho\rho}}$ $\xi = \theta - \iota \varphi$

Poloidally resolved transport studies

Simultaneous measurement of turbulent transport at two toroidal positions

- Measurement with two 64-Langmuir-probe-arrays (flux tube aligned)
- Different behaviour of transport at different positions will show the influence of magnetic field geometry

Summary

- Fluctuation amplitudes of ϕ_f and $I_{i,sat}$, the turbulent transport levels, and the measured growth rates have local maxima in the region of bad curvature ($\kappa_n < 0$).
- Additionally, a small shift of this maximum to the top of the poloidal cross section is observed.
- This is possibly caused by influences of the geodesic curvature or magnetic shear.
- Use of a second poloidal array at an other toroidal position and comparison with theoretical growth rates (e.g. Nasim et al. PPCF 46 (2004)) will elucidate the influence of normal and geodesic curvature, and (integrated) local magnetic shear on drift wave turbulence