

Design Studies on Split and Segmented-Type Helical Coils for FFHR N. Yanagi, K. Nishimura, G. Bansal¹⁾, A. Sagara, O. Motojima National Institute for Fusion Science, Japan ¹⁾ Institute for Plasma Research, India

17th International Stellarator/Heliotron Workshop Princeton, New Jersey, USA October 12-17, 2009

Realization of Helical Demo-Reactor Based on LHD

 $R_c = 16.74 \text{ m}, \gamma = 1.2, \alpha = +0.1, R_p = 15.45 \text{ m}, B_p = 4.84 \text{ T}, j_{HC} = 26 \text{ A/mm}^2$ Stored magnetic energy = 145 GJ

- Interference of ergodic layers with blankets : ~70 mm
- Clearance of $\Delta_{\text{HC-VV}} = 110$ mm really enough?

Is it possible to obtain magnetic surfaces with better symmetry and larger clearances?

If we decrease the helical pitch parameter γ

m: Toroidal Pitch Number (=10)

- ℓ : Poloidal Pole Number (= 2)
- $r = \frac{m}{\ell} \frac{a_c}{R}$ a_c : Minor Radius of HC (= 3.22)
 - R : Major Radius of HC (=14.0)

- $\gamma = 1.25$ 1.20 ~ 1.0 FFHR-2m2 **FFHR-2S** LHD (Type-I)
- Larger clearances between the ergodic region and blankets
- **Smaller magnetic surfaces**

An Orthodox Image of **Heliotron Reactor** A. Iiyoshi

Helical symmetry is improved by increasing/decreasing current density of helical coils at the inboard/outboard side

K. Nishimura and M. Fujiwara, "Symmetrized Magnetic Field Configuration of Low-Aspect Ratio Helical System" JPSJ 64 (1995) pp.1164-1171.

 $\begin{aligned} R_c &= 17.33 \text{ m} \text{ , } \gamma = 1.2 \text{, } \alpha = +0.1 \text{, } R_{axis} = 18.0 \text{ m} \text{, } B_{axis} = 4.3 \text{ T} \text{, } j_{HC} = 26.0 \text{ A/mm}^2 \text{, } a_{PC} = 8.2 \text{ m} \\ \text{HC} : 38.72 \text{ MA} \text{, } \text{OV} : -18.30 \text{ MA} \text{, IV} : -13.29 \text{ MA} \\ \text{Stored magnetic energy} = 136.3 \text{ GJ} \end{aligned}$

Two Options of FFHR-2S: Type-I & Type-II

Smaller size and higher field → reduction of total mass with comparable fusion power

Large magnetic surfaces with outward-shifted configuration → suitable for SDC operation?

ICRF antenna has good accessibility for FFHR-2S K. Saito et al., to be published in Plasma and Fusion Res.

Comparison of Coil Configurations

Comparison of Magnetic Field Properties

Comparison of Particle Orbits

• Drift orbits of alpha particles with 90 degrees pitch angle

Good confinement with inward shifted configurations of FFHR-2m2
 Not good confinement with outward shifted configurations of FFHR-2S with a pitch modulation parameter α = +0.1

Comparison of Particle Orbits

Confinement is improved for FFHR-2S with α = 0
High-density core plasma might be heated by injecting ECH and/or neutral beams from the inboard side of the torus

Proposal of Segmented Fabrication of Helical Coils

Winding Machine for the LHD Helical Coils (Continuous Conductors)

Concept of Demountable Helical Coils

K. Uo et al., Proc. 14th Symposium on Fusion Technology (1986) 1727-1732.

→ Renewal of the idea with high-temperature superconductors (HTS)H. Hashizume et al., J. Plasma Fusion Res. SERIES 5 (2001) 532.

LHD-type Fusion Energy Reactor FFHR

Options for SC Materials

LTS \rightarrow Nb₃Al, Nb₃Sn, V₃Ga

HTS → REBCO (RE-123 based coated-conductor; YBCO, GdBCO)

Options for Conductor Type and Cooling Method

CICC (force-cooling)

Solid (indirect cooling)

- → LTS (1st Option)
- ng) → LTS (2nd Option)

HTS (3rd Option)

Proposal of HTS Conductor for FFHR

Major Specification of HTS Conductor

Superconductor Conductor size Operation current Maximum field Operation temperature Current density Number of HTS tapes Bending strain

Maximum hoop stress Copper to HTS ratio Outer jacket Cooling method

REBCO 60 mm × 40 mm 100 kA ~13 T 20 - 30 K~40 A/mm² 100 **0.4% (Conductor) 0.05% (HTS part)** ~370 MPa 7.0 S.S. or Al-alloy **Indirect cooling**

10 kA-Class HTS Conductor (YBCO & GdBCO)

Superconductor Conductor size Critical current of a tape (@77 K, s.f.) Width / thickness of a tape Thickness of REBCO layers Supplier Number of HTS tapes Critical current at 20 K

YBCO & GdBCO 13.0 mm × 7.5 mm 210 A (YBCO) 190 A (GdBCO) 10 mm / 0.1 mm ~1 μm ISTEC-SRL 16 15 kA (20 K, 8 T) Copper sheath YBCO tapes just before connecting Bi-2223/Ag tapes for uniform current distribution

→700 A for recent short samples

→ ~3 μm

 \rightarrow > 50 kA

Temperature Dependence of Critical Current

• Critical current was measured with bias magnetic field. Measurement error was relatively big due to the electrical noise and insufficient temperature control.

→ Second experiment is being planned in 2009

-100

-10

0

20

Time (s)

30

40

50

10

magnitude higher than that of LTS large-scale conductors.

Required Refrigeration Power for Joints

40 mm

Stainless Steel

HTS Tapes

Insulation

- Ten double pancakes (400 turns of conductors)
- Windings : 1600 mm × 800 mm (j = 30 A/mm²)
- Thinner top cover and addition of bottom plate
- Divided into ten blocks for protection
- Possible to apply only with segmented fabrication

Mechanical Analysis of Stresses inside the Helical Coil Pack (using ANSYS)

(by Romain Champailler)

summary o

()

Split-type helical coils possess remarkable features for configuration optimization of heliotrons

- Type-I: Smaller major radius, higher field, lower weight
- Type-II : Larger minor radius with magnetic well
- Drift orbits of deeply trapped particles can be improved by lowering helical pitch modulation parameter ($\alpha = 0$)

Segmentation of helical coils with HTS conductors is feasible

- Simple stacking of REBCO HTS tapes for 100 kA conductors
- 10 kA-class conductor samples were successfully tested
- Helical coils might be assembled with half-pitch modules
- Double-pancake windings can be applied with segmented fabrication