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L/M = 1/4 helical coil
He I iO tron J (R (a,)=1.2m/0.1-0.2 m
B, <1.5T, vV2n = 0.4 ~ 0.65
r ) Avya) ~ 1.4 % for STD configuration.
Magnetic well = 1.3 %

ECH : 70GHz (2" X, < 0.45 MW)
NBI : 30KV, 0.7MW x 2 beam-lines
ICRF : 19~23MHz (< 0.4 MW x 2 units)

— ECH (up to 2008 campaign)
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Experimental studies of improved confinement are in progress.

Proposals for collaboration studies are welcome!
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Bumpiness Control Experiments (1)
— Fast lons —
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m To study the effect of the magnetic configuration
on the generation and confinement of fast protons
generated by ICRF minority heating, fast ion
velocity distribution has been investigated.

m The high energy tail component extended to
~ 30 keV is observed near the pitch angle of 120°
only in the high-g, case, where the observation
range is 111° - 128°.



A Schematic View of ICRF Heating Antenna
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» Two loop antennas are installed
at the corner section (#14.5)

of Heliotron J. Two-ion hybrid resona%e L cutoff o,
[ ] /
» The mod-B structure is 04 —
tokamak-like in this section. B
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Electron Density 0.2-0.6 X 101° m-3




CX-NPA System and ICRF Antennas
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Bird's eye view of Heliotron J plasma,

ECH, NBI and ICRF systems and CX-NPA
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Energy range : 0.4 - 80 keV (Hydrogen)
: 0.2 - 40 keV (Deuterium)

Energy resolution: 5% (typical)

Toroidal angle  :-10° < ¢pyp, <+18°

Poloidal angle : =30 <Oyps <100




Pitch Angle and Bumpy Dependence

An ICREF pulse of 23.2 MHz or 19 MHz is
injected into an ECH target plasma.

T,(0) = 0.2 keV, T,(0) = 0.8 keV and = 0.4 x 10" m™.

ICREF injection power is 250-290 kW.

* In high bumpy case, the ion flux is measured

up to 34 keV at the pitch angle of 120°.

* In the medium case, the change in energy
spectrum is small.

* In low bumpy case, the fast ion flux is
increased continuously towards 90°.
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Calculated Pitch Angle Distributions

mm Heliotron J AE, Kyoto University

"= High Bumpiness

* The high energy ions are generated near 60°
and 120° in pitch angle.

* The higher energy flux can be observed in the
high bumpy case in comparison with other cases. ¥ ™ 100

* In the medium and low bumpy cases, the high -
energy component is smaller than that in the
high bumpy case.

* One of the reasons of these tendency is the orbit
loss structure near the perpendicular direction.

Medium Bumpines




Bumpiness Control Experiments (2)

— Global Energy Confinement —
mm Heliotron J I NN BN B /1 F, Kyoto University

m Following to the pervious study for ECH-only
plasma, the global energy confinement has been
compared among the three configurations
for NBI-only plasma.

m The better plasma performance in W /V has
been obtained in the high- and medium-¢, cases

compared to that in the low- g, case.
— The improvement in T, and T, contributes to the
higher plasma performance in these configurations.



Bumpiness Effects on Plasma Performance:
W, in the high- and medium-¢, configurations is clearly

higher than that in the low-¢
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NBI(CTR)-only
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m Density ramp-up experiments
X-mode 2" ECH @ 70 GHz

m W, increases with density up to
~2.5x10" m3 (close to the cut-off).



Bumpiness Control Experiments (3)
—ECCD —
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m A wide configuration scan shows that the EC driven
current strongly depends on the magnetic ripple
structure where the EC power is deposited.

m As the EC power is deposited on the deeper ripple
bottom, the EC driven current flowing in the Fisch-
Boozer direction decreases, and the reversal of directly
measured EC driven current is observed.

® The normalized ECCD efficiency is found to be
independent of the absorbed EC power
for both ripple top and bottom heating cases.

m In order to increase the controllability of ECCD,
the launching position and system has been changed.



Effect of Magnetic Ripple on ECCD
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* The bumpiness control causes the change in ripple structure.

* The toroidal current changes its flowing direction depending
on the ripple structure.

* The current direction is explained by the balance
between the Fisch-Boozer effect and the Ohkawa effect.
K. Nagasaki, FEC2008, submitted to NI



Upgraded Launching System

I I NN BN B /4, Kyoto University

mmm Heliotron J

* A launching system with a focusing ol oom g 00(a) 000
mirror and a steering mirror has sfl| e S
been installed in Heliotron J _ T T AL — 1
for the 2009 experimental campaign. < ° s e

* The main purposes are to localize the |
power absorption profile and to =

contrOl ECCD by Changlng N”o ’ 80. QOFSOCJ()géid 1%814:.181508i;0n beOOam’OZ\AI=§0prr0]6m 0.8 1.0

Steering mirror * -0.1 <N” <0.6
— * Possible to Inject along magnetic axis
Flange transition
Launcher |
#9.5 port T A - 5 &
Window SRR, imtetmt L
VORI e s N\ T
1 - e (Sl & WYY e : |

I Oversized corrugated waveguide




To deepen the understanding of
configuration effects on the plasma performance
& enhanced confinement physics,
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m Expansion of investigation range in (g/g,, €,/¢,)-
space with different iota values,

m Build-up of profile database by upgrading
the diagnostic system,

m Expansion of achievable plasma parameter
range by fueling and PWI control,

m Increase of the plasma current controllability,
m Comprehensive study of plasma turbulence.



Expansion of investigation range
in (e/¢g,, €,/¢,)-space with different iota values
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Particle Flux in 1/v regime
1 by Shalng model

m The configuration
parameter (V2m, g
range, which has been
surveyed so far, is limited.

m Experiments in the
expanded investigation
range in (e/g,,, g,/€})-
space with different iota
values are proposed.

TN




Upgrade of CXRS System (scheduled)
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New Nd:YAG Thomson Scattering System
O Purpose:
Measurement of temporal evolution of the profile of the
- Heliotron J plasma for the study of the improved confinement -m
by the profile control. e Healiotron

O Two 50Hz Nd:YAG lasers (550mJ):
The plasma profiles can be measured with 10ms interval.

O High photon count:
Obliquely back scattered light is collected with large concave
mirror (R=800mm).

O The system have 25 polychromators that have 5 wavelength
channels: Spatial resolution is ~1cm.

Bean Dump and
Beam Location Monitor
)

Heliotron J




AM reflectometer
for electron density profile measurement

Cutoff frequency [GHZz]
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Schematic of AM reflectometer
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Preliminary Result of Reflectometer Measurement

mm Heliotron J I S BN BN W /1 F, Kyoto University

#35084 ECH, STD Config. #35084 ECH, STD Config.

L5 e 2.5 ECH
@ 183 ms ' I
| g | 2.0t (b)  n
g LOf N\ ool ' sl 5
.—.2 \\ —223 ms —;C_‘D . L :

a x, 1.0}
:cu 0'5 i & | Q‘U i :
AL 0.5 :
i zgli?sgnetlc 1 ‘ LCFS ‘ :
0.0l 12 0.0 Lo :
.15 120 125 1 30 L5353 60 180 200 220 240

R [m] Time [ms]



Fueling/PWI control can be an important
factor to obtain the improved confinement.

mmm Heliotron J I BN Emm W /4 F, Kyoto University

NBIFECHASTD m SMBI can expand the

- SMBI | operation region of
4l (50131 ) Heliotron J.
 puff % | m The stored energy reached
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Comprehensive Study of Plasma Turbulence

mmm Heliotron J
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m MHD Activities
— GAE
— MHD Study with Data Mining Technique

m Edge Turbulence
— Relation of the edge (inside/outside the LCFS)
turbulence with the transition
— Difference between O- and X-points of the Flux
Surface
— “Long Distance Correlation”

m Biasing Experiment



New Langmuir Probe Systems (proposed)
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Objective
- Simultaneous measurement of
oK. and oE,.

6Er=((Psl-(Ps2)/ Ar

I I NN BN B /4, Kyoto University

Tungsten(?) Pin

ALBALR

-

ALl

Molybdenum
oEq =(9,-¢,;)/A0 or Carbon
- Evaluation of turbulence driven transport. /
[ irbutence =< Me = OFo >/ Br
- Investigation of nonlinear relationship
between Reynolds stress and turbulence.
<6V, * 6vo> V< 8Es *+ SE.> [ B’

O-point (#11.5) X-point (#7.5)

- Correlation of fluctuations
at different toroidal sections.




HDLP installation into Heliotron J @

Cross section of poinca#e plot for STD config. of Heliotron J HDLP top view and cross section
mm Heliotron J @/
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Probe tips &
Mirnov coill

* Enable to change insertion depth and poloidal angle (0 to -5
deg.)
* Probe angle in z-¢ plane is flexible (20 degrees in this
experiment).

€ To align HDLP probe tips to magnetic field

* Almost separate Co- and Ctr-going ion fluxes, however,
*K. N3¢a0kd, ¢ (AL 1 C1as M a Fusion Bes 1 0002000+ Fa N agapk 23 A ale, Brog. LePR2008, P2-156



Studies of MHD in Heliotron J

v" Topics of MHD equilibrium/stability of Heliotron J

» Effect of magnetic configuration with a low magnetic shear in combination with a magnetic well
on MHD stability, in particular, pressure driven interchange and ballooning modes.

=> To apply the data mining technique to build MHD database
for getting unified understanding of a helical plasmas.

» Effect of finite beta and plasma current on MHD equilibrium for high beta plasma operation.

» Effect of magnetic island on confinement and external control of magnetic island by resonant
magnetic perturbation (RMP) in a low magnetic shear configuration.

» Energetic-ion-driven MHD instabilities including global Alfvén eigenmode (GAE),
helicity-induced AE (HAE) and mirror-induced AE (MAE)
and their effect on energetic ion transport.

v" Diagnostics for MHD studies in Hehotron J
Toroidal (4ch) /Poloidal (14ch) array

of magnetic probe (By)

Soft-X ray and AXUYV diode array (16ch)
Poloidal array of saddle coil (Br)

ECE radiometer '
Movable Langmuir probe array 20 syt

A\

VVYVY

v" Future Plan of diagnostics W *
» Upgrading magnetic probes and saddle coils PN, e
» Soft-X ray computer tomography (SX-CT) <

» Heavy ion beam probe (HIBP)

z (m)




Bursting GAEs in Heliotron J (1(a)/27 = 0.54) /@‘
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GAE burst using HDLP. w"’ -2[ ]

- Sensitive response in Co-directed channelto  ,f &+ & & &+ & 4 ]
the GAE bursts. 197 198 199 200 201 202

- Short-time and small response of CTR-directed time (ms)

channel in earlier phase of burst, (disappeared after the peak of magnetic
fluctuation)



Expansion of achievable plasma parameter range
by fueling and PWI control
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m Fueling Control
— Conventional Gas-Puff
— SMBI (Supersonic Molecular Beam Injection)
— Pellet Injection (under discussion)

m PWI Control

— Lithium Coating (or Boron Coating)
(under discussion)



