
Heliotron J Heliotron J 

−−−− Overview of Heliotron J −−−−

Recent Results and �ear-Future Plan Recent Results and �ear-Future Plan 

of Heliotron J Projectof Heliotron J Project

Heliotron J Team

IAE, Kyoto University

IAE, Kyoto University IAE, Kyoto University 

contact person: MIZUUCHI Tohru



Heliotron J
L/M = 1/4 helical coil

〈〈〈〈R0〉〉〉〉/ 〈〈〈〈ap〉〉〉〉 = 1.2m/0.1-0.2 m
B0 < 1.5T, ιιιι/2π/2π/2π/2π = 0.4 ~ 0.65

Heliotron J IAE, Kyoto University

Heliotron J B0 < 1.5T, ιιιι/2π/2π/2π/2π = 0.4 ~ 0.65
∆ι/∆ι/∆ι/∆ι/ιιιι(a) ≈≈≈≈ 1.4 % for STD configuration.

Magnetic well ≈≈≈≈ 1.3 %

ECH :  70GHz (2nd X, ≤≤≤≤ 0.45 MW)

�BI   :  30kV, 0.7MW ×××× 2 beam-lines   
ICRF : 19~23MHz (≤ 0.4 MW ×××× 2 units)

ECH (up to 2008 campaign)
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Experimental studies of improved confinement are in progress. 

Proposals for collaboration studies are welcome!
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Proposals for collaboration studies are welcome!

� Confinement Studies� Confinement Studies
– Configuration effects 

» Iota (incl. Ip-effects) p

• Iota-control by ECCD/NBCD

» εh, εt, εb
» Resonance perturbation fields

– Plasma profile control– Plasma profile control
» Accumulation of profile database

» Fueling/recycling control
• SMBI and Li-coating (under discussion)

– Plasma rotation control
» Co/CTR NBI

» Electrode Bias (low field exp.)

– Plasma turbulence

– Transport of energetic particles

� Upgrade of heating and diagnostic equipments 

for FY2009 campaign

Focusing/steering ECH launcher
– Transport of energetic particles

» NBI, ICRF

� ECCD/ECH Studies 
Application of the data-mining 

─ Focusing/steering ECH launcher

─ Reflectometer for density profile 

measurement

Combination Langmuir probes at 3 positions � Application of the data-mining 
method for MHD studies

─ Combination Langmuir probes at 3 positions

─ Two SMBI systems

─ CXRS system



Bumpiness Control Experiments (1)

−−−− Fast Ions −−−−
IAE, Kyoto UniversityHeliotron J

−−−− Fast Ions −−−−

� To study the effect of the magnetic configuration 

on the generation and confinement of fast protons on the generation and confinement of fast protons 

generated by ICRF minority heating, fast ion 

velocity distribution has been investigated. velocity distribution has been investigated. 

� The high energy tail component extended to � The high energy tail component extended to 

~ 30 keV is observed near the pitch angle of 120°°°°
only in the high-εb case, where the observation only in the high-εb case, where the observation 

range is 111°°°° - 128°°°°.



A Schematic View of  ICRF Heating Antenna
IAE, Kyoto UniversityHeliotron J

�Two loop antennas are installed 

A Schematic View of  ICRF Heating Antenna

�Two loop antennas are installed 

at the corner section (#14.5) 

of Heliotron J. Two-ion hybrid resonance L cutoff ωof Heliotron J.

�The mod-B structure is 

tokamak-like in this section.

Two-ion hybrid resonance L cutoff ωH
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CX-�PA System and ICRF Antennas
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    Bird's eye view of Heliotron J plasma,     Bird's eye view of Heliotron J plasma, 

ECH, %BI and ICRF systems and CX-%PA
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Calorimeter

Antenna

Calorimeter

Faraday

Screen

Type     : E//B type
CX-�PA system

Side Guards
Energy range     : 0.4 - 80 keV (Hydrogen)

    : 0.2 - 40 keV (Deuterium)

Energy resolution     : 5% (typical)

Toroidal angle : -10o < φφφφ�PA < +18o    

Side Guards

Toroidal angle : -10  < φφφφ�PA < +18     

Poloidal angle : -3o < θθθθ�PA < +10o



Pitch Angle and Bumpy Dependence
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Bumpiness

• An ICRF pulse of 23.2 MHz or 19 MHz is 

injected into an ECH target plasma.
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Calculated Pitch Angle Distributions
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High Bumpiness

Calculated Pitch Angle Distributions

• The high energy ions are generated near 60°°°°
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• The high energy ions are generated near 60°°°°
and 120°°°° in pitch angle. 

• The higher energy flux can be observed in the 
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Bumpiness Control Experiments (2)

−−−− Global Energy Confinement −−−−
IAE, Kyoto UniversityHeliotron J

−−−− Global Energy Confinement −−−−

� Following to the pervious study for ECH-only � Following to the pervious study for ECH-only 

plasma, the global energy confinement has been 

compared among the three configurations compared among the three configurations 

for �BI-only plasma. for �BI-only plasma. 

� The better plasma performance in Wp/Vp has 

been obtained in the high- and medium-εεεεb cases been obtained in the high- and medium-εεεεb cases 
compared to that in the low- εεεεb case. 
– The improvement in T and T contributes to the – The improvement in Ti and Te contributes to the 

higher plasma performance in these configurations. 



Bumpiness Effects on Plasma Performance:
Wp in the high- and medium-εεεεb configurations is clearly 

higher than that in the low-εεεε case. 
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�BI(CTR)-only

p b
higher than that in the low-εεεεb case. 
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� Power scan experiments

0.2 MW < P (CTR) < 0.6 MW

� Density ramp-up experiments
X-mode 2nd ECH @ 70 GHz
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X-mode 2nd ECH @ 70 GHz

� Wp increases with density up to 
~2.5x1019 m-3 (close to the cut-off). 



Bumpiness Control Experiments (3)

−−−− ECCD −−−−
IAE, Kyoto UniversityHeliotron J

−−−− ECCD −−−−

A wide configuration scan shows that the EC driven � A wide configuration scan shows that the EC driven 
current strongly depends on the magnetic ripple 
structure where the EC power is deposited. structure where the EC power is deposited. 

� As the EC power is deposited on the deeper ripple 
bottom, the EC driven current flowing in the Fisch-bottom, the EC driven current flowing in the Fisch-
Boozer direction decreases, and the reversal of directly 
measured EC driven current is observed. measured EC driven current is observed. 

� The normalized ECCD efficiency is found to be 
independent of the absorbed EC power independent of the absorbed EC power 
for both ripple top and bottom heating cases. 

� In order to increase the controllability of ECCD, � In order to increase the controllability of ECCD, 
the launching position and system has been changed.



Effect of Magnetic Ripple on ECCD
IAE, Kyoto UniversityHeliotron J

Effect of Magnetic Ripple on ECCD
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• The toroidal current changes its flowing direction depending 
on the ripple structure.

• The current direction is explained by the balance • The current direction is explained by the balance 
between the Fisch-Boozer effect and the Ohkawa effect.

K. �agasaki, FEC2008, submitted to �F



Upgraded Launching System 
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Upgraded Launching System 

• A launching system with a focusing 30
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To deepen the understanding of 
configuration effects on the plasma performance 

& enhanced confinement physics, 
IAE, Kyoto UniversityHeliotron J

& enhanced confinement physics, 

� Expansion of investigation range in (εεεεt/εεεεh, εεεεb/εεεεh)-
space with different iota values,space with different iota values,

� Build-up of profile database by upgrading 

the diagnostic system,the diagnostic system,

� Expansion of achievable plasma parameter � Expansion of achievable plasma parameter 

range by fueling and PWI control,

� Increase of the plasma current controllability, � Increase of the plasma current controllability, 

� Comprehensive study of plasma turbulence.



Expansion of investigation range 
in (εεεεt/εεεεh, εεεεb/εεεεh)-space with different iota values
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in (εεεεt/εεεεh, εεεεb/εεεεh)-space with different iota values

Particle Flux in 1/νννν regime

� The configuration 

ιιιι ππππ εεεε
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by Shaing model
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Upgrade of CXRS System (scheduled)
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�ew �d:YAG Thomson Scattering System

� Purpose: 

IAE, Kyoto UniversityHeliotron J

� Purpose: 

Measurement of temporal evolution of the profile of the 

Heliotron J plasma for the study of the improved confinement 

by the profile control.

� Two 50Hz Nd:YAG lasers (550mJ): � Two 50Hz Nd:YAG lasers (550mJ): 

The plasma profiles can be measured with 10ms interval.

� High photon count: 

Obliquely back scattered light is collected with large concave 

mirror (R=800mm).mirror (R=800mm).

� The system have 25 polychromators that have 5 wavelength 

channels:  Spatial resolution is ~1cm.



AM reflectometer
for electron density profile measurement
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for electron density profile measurement
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Schematic of AM reflectometer
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Preliminary Result of Reflectometer Measurement
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Fueling/PWI control can be an important 
factor to obtain the improved confinement.
Heliotron J IAE, Kyoto University
factor to obtain the improved confinement.
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Comprehensive Study of Plasma Turbulence
IAE, Kyoto UniversityHeliotron J

Comprehensive Study of Plasma Turbulence

� MHD Activities� MHD Activities
– GAE

– MHD Study with Data Mining Technique– MHD Study with Data Mining Technique

Edge Turbulence� Edge Turbulence
– Relation of the edge (inside/outside the LCFS) 

turbulence with the transition

– Difference between O- and X-points of the Flux 

SurfaceSurface

– “Long Distance Correlation” 

� Biasing Experiment� Biasing Experiment



�ew Langmuir Probe Systems (proposed)

IAE, Kyoto UniversityHeliotron J

Tungsten(?) Pin

ObjectiveObjective
- Simultaneous measurement of 

δEr and δEθ.

Molybdenum

or Carbon

δEr and δEθ.

δEr=(φs1-φs2)/ ∆r

δEθ =(φs2-φs3)/∆θ

- Evaluation of turbulence driven transport.- Evaluation of turbulence driven transport.

- Investigation of nonlinear relationship 

Teturbulence BEn />=<Γ θδδ ・
- Investigation of nonlinear relationship 

between Reynolds stress and turbulence.

>< θr vδvδ ・ BEδEδ eθ /~ >< ・ 2

O-point (#11.5) X-point (#7.5)
- Correlation of fluctuations

at different toroidal sections.

>< vδvδ BEδEδ /~ ><

at different toroidal sections.



HDLP installation into Heliotron J
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Plasma

Cross section of poincare plot for STD config. of Heliotron J HDLP top view and cross section

HDLP
Plasma

Probe tips &
Mirnov coilMirnov coil

• Enable to change insertion depth and poloidal angle (0 to -5 • Enable to change insertion depth and poloidal angle (0 to -5 

deg.)

• Probe angle in z-φφφφ plane is flexible (20 degrees in this • Probe angle in z-φφφφ plane is flexible (20 degrees in this 
experiment).

���� To align HDLP probe tips to magnetic field���� To align HDLP probe tips to magnetic field

•Almost separate Co- and Ctr-going ion fluxes, however, 

some highly and vertically accelerated particles are still *K. �agaoka, et al., Plasma Fusion Res. 1, 005 (2006). **K. �agaoka, et al., Proc. ICPP2008, P2-156 

(2008).



Studies of MHD in Heliotron JStudies of MHD in Heliotron J
� Topics of MHD equilibrium/stability of Heliotron J

� Effect of magnetic configuration with a low magnetic shear in combination with a magnetic well
on MHD stability, in particular, pressure driven interchange and ballooning modes.on MHD stability, in particular, pressure driven interchange and ballooning modes.

➔ To apply the data mining technique to build MHD database 
for getting unified understanding of a helical plasmas.

� Effect of finite beta and plasma current on MHD equilibrium for high beta plasma operation.

� Effect of magnetic island on confinement and external control of magnetic island by resonant 
magnetic perturbation (RMP) in a low magnetic shear configuration.

� Energetic-ion-driven MHD instabilities including global Alfvén eigenmode (GAE), 
helicity-induced AE (HAE) and mirror-induced AE (MAE) helicity-induced AE (HAE) and mirror-induced AE (MAE) 
and their effect on energetic ion transport.

� Diagnostics for MHD studies in Heliotron J
� Toroidal (4ch) /Poloidal (14ch) array 

of magnetic probe (Bθ)

� Soft-X ray and AXUV diode array (16ch)

� Poloidal array of saddle coil (Br)

RMP coil Magnetic probes

� Poloidal array of saddle coil (Br)

� ECE radiometer

� Movable Langmuir probe array

� Future Plan of diagnostics
� Upgrading magnetic probes and saddle coils

� Soft-X ray computer tomography (SX-CT)� Soft-X ray computer tomography (SX-CT)

� Heavy ion beam probe (HIBP) HIBP design



#30014 passband (40-70kHz)

Bursting GAEs in Heliotron J (ιιιι(a)/2ππππ = 0.54)
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Expansion of achievable plasma parameter range 
by fueling and PWI control
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by fueling and PWI control

� Fueling Control
– Conventional Gas-Puff– Conventional Gas-Puff

– SMBI (Supersonic Molecular Beam Injection)

– Pellet Injection (under discussion)– Pellet Injection (under discussion)

� PWI Control� PWI Control
– Lithium Coating (or Boron Coating)

(under discussion)(under discussion)


