Reconnection in Relativistic Plasma

Masahiro Hoshino University of Tokyo

Workshop on Opportunities in Plasma Astrophysics January 2010, Princeton

Relativistic Reconnection in Astrophysics

- Relativistic Plasmas in Astrophysics:
 - Pulsars & Winds ($\gamma \sim 10^{6-7}$)
 - Extragalactic radio source ($\gamma \sim 10$)
 - Gamma ray bursts (y > 100)

Crab Nebula

Progress of Relativistic Reconnection

1995 2000 2005 2010

Blackman & Field (1994)

Lyutikov & Uzdensky (2003)

Watanabe & Yokoyama (2006)
Zenitani et al (2009)

Lyubarsky (2005)

MHD modeling (fast reconnection)

MHD simulation

Zenitani & MH (2001)

Jaroschek et al (2004)

Bessho & Battacharjee (2007)

In astrophysical context

PIC simulation (strong particle acceleration & heating)

Jaroschek & MH (2009)

(radiation cooling)

Coroniti 1990, Kirk et al. 2003

Relativistic Current Sheet Instabilities

Relativistic Temperature: T/mc² >1

Plasma Sheet: $B^2 = nT$

$$\rightarrow V_A^2 = B^2/nm > c^2$$

Electron and Positron Plasmas

Relativistic Reconnection

(Particle-in-Cell simulation)

Non-thermal particle acceleration

Drift Kink Instability

(Current Driven Instability)

Drift-Kink Mode (early stage)

Initial condition: relativistic Harris solution

Drift-Kink Mode (nonlinear stage)

 $E \cdot J > 0$ strong magnetic energy dissipation

Drift Kink

Reconnection

Non-Relativistic Regime

Relativistic Regime

Reconnection in Non-Relativistic, Drift-Kink in Relativistic Regime

3D Current Sheet Evolution

Isosurface of N, Color contour of N at neutral sheet

Drift-Kink grows faster than Reconnection

Nonlinear Stage of 3D Current Sheet

Drift-Kind Mode dominates, No Reconnection.

Turbulent Sheet

Transition to turbulence is fast in 3D than in 2D plasma mixing

Relativistic Current Sheet Instabilities

 $V_A/c \sim O(1)$, $T/mc^2 \sim O(1)$, Electron and Positron Plasmas

Radiation Effect in Relativistic Current Sheet

synchrotron cooling in strong B

$$\frac{\tau_{loss}}{\tau_{dyn}} \approx \left(\frac{10^2}{\tau_{dyn}\Omega_c}\right) \left(\frac{10^{12}G}{B}\right) \left(\frac{10}{E/mc^2}\right)^2$$

magnetar

Duncan & Thompson

pulsar

Spitkovsky (2006)

Radiation Loss Effect in PIC Simulation Code

Abraham-Lorentz Formula for Radiation Drag Force

$$mc \frac{du^i}{ds} = \frac{e}{c}F^{ik}u_k + g^i$$
 (Dirac Form)

$$g^{i} = \frac{2e^{2}}{3c} \left(\frac{d^{2}u^{i}}{ds^{2}} + u^{i} \frac{du^{k}}{ds} \frac{du_{k}}{ds} \right)$$

$$= \frac{2e^{3}}{3mc^{3}} \frac{\partial F^{ik}}{\partial x^{l}} u_{k} u^{l} - \frac{2e^{4}}{3m^{2}c^{5}} F^{ik} F_{lk} u^{l} + u^{i} \cdot \frac{2e^{4}}{3m^{2}c^{5}} (F^{kl}u_{l}) (F_{km}u^{m})$$

$$\alpha \equiv \omega_c \tau_0 = \frac{eB}{mc} \frac{e^2}{mc^3} << 1$$
 τ_0 : Light crossing time over classical electron radius

(cf. Noguchi & Liang 2006; Koga et al. 2007)

Synchrotron Radiation Effect

Without radiation loss

With radiation loss

Fast Reconnection

Time Evolution of MR & DKI

Comparison of Growth Rate

Relativistic Tearing Mode

Super-Fast Reconnection

$$T_{\perp} > T_{\parallel}$$

Relativistic Drift-Kind Mode

weak

(radiation cooling)

strong

Relativistic Current Sheet Instabilities

Radiation Cooling $V_A/c \sim O(1)$, $T/mc^2 \sim O(1)$, Electron and Positron Plasmas

Opportunities in Relativistic Reconnection

- Relativistic Plasma Sheet with T/mc²>>1
 - "Drift-Kink" > "MRX" without radiation effect
 - "MRX" > "Drift-Kink" with radiation cooling

- Laser Produced Reconnection
 - efficiency of particle acceleration as a function of V_A/c

Large Scale Relativistic Reconnection

Power-law Energy Spectrum

Jaroschek et al. ApJ 2004

Radiation Loss Effect in PIC Simulation Code

Abraham-Lorentz Formula for Radiation Drag Force

$$\mathbf{T}_{1} = \frac{2}{3} \gamma \cdot (\omega_{c0} \tau_{0}) \cdot (mc\omega_{c0}) \cdot ((\hat{\partial}_{t} + \hat{\mathbf{v}} \cdot \hat{\nabla})\hat{\mathbf{E}} + \hat{\beta} \times (\hat{\partial}_{t} + \hat{\mathbf{v}} \cdot \hat{\nabla})\hat{\mathbf{B}})$$

$$\mathbf{T}_{2} = \frac{2}{3} \cdot (\omega_{c0}\tau_{0}) \cdot (mc\omega_{c0}) \cdot (\hat{\mathbf{E}} \times \hat{\mathbf{B}} + \hat{\mathbf{B}} \times (\hat{\mathbf{B}} \times \beta) + \hat{\mathbf{E}}(\beta \cdot \hat{\mathbf{E}}))$$

$$\mathbf{T}_{3} = -\frac{2}{3}\gamma^{2} \cdot (\omega_{c0}\tau_{0}) \cdot (mc\omega_{c0}) \cdot \beta \cdot ((\hat{\mathbf{E}} + \beta \times \hat{\mathbf{B}})^{2} - (\hat{\mathbf{E}} \cdot \hat{\beta})^{2})$$

τ₀: Light crossing time over classical electron radius (e^2/mc^2)/c ~ 10^-23 s!

Main Radiation Effect is Synchrotron Radiation

3D Reconnection with Guide Field (By)

3D Reconnection with Guide Field

Radiation cooling (OFF)

Radiation cooling (ON)

radiation cooling at plasma sheet → pressure decreases → thin current sheet → fast reconnection with stronger E=-vxB field, small magnetic islands

radiation loss

no radiation

no radiation

 $N(\varepsilon) \propto \varepsilon^{-3.3}$

radiation loss

$$N(\varepsilon) \propto \varepsilon^{-2.4}$$