Relativistic beams: generation, dissipation, connection to shock physics

Luís O. Silva

GoLP

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico (IST) Lisbon

Portugal

http://web.ist.utl.pt/luis.silva/http://cfp.ist.utl.pt/golp/

Relevance

Relativistic flows & shocks

Scientific Questions

Instabilities, B-fields and particle acceleration

Possible directions

Theory, simulations and experiments with lasers

Summary

Cosmic rays, GRBs, radiation signatures

Relevance

Relativistic flows & shocks

Scientific Questions

Instabilities, B-fields and particle acceleration

Possible directions

Theory, simulations and experiments with lasers

Summary

Relativistic colliding flows present in many astro scenarios

Plasma instabilities critical to shock formation and field structure

B-fields generated by current filamentation/Weibel in GRBs

[Medvedev & Loeb, Gruzinov & Waxman, 99]

Shock

front

Fields in relativistic shocks are mediated by Weibel/current filamentation generated fields

[Spitovsky 08]

Fields in shock \Rightarrow Fermi acceleration \Rightarrow B-field generation/amplification

Ab initio Fermi acceleration determined by structure of the fields in the shock front [Spitkovsky 08, Martins et al, 09]

■ B-field amplification in upstream region via nonresonant "Bell" instability [Bell 04]

L. O. Silva | WOPA, Princeton, January 20 2010

Relevance

Relativistic flows & shocks

Scientific Questions

Instabilities, B-fields and particle acceleration

Possible directions

Theory, simulations and experiments

Summary

Relativistic beam dynamics and shocks

- What are the dominant unstable modes in the flow and the field structure in the shock (statistical average) for different bulk Lorentz factors, mixture of species, mass ratios, magnetization?
- What are the mechanisms for energy transfer to fields and between species (and how much)?
- What are the **signatures** (e.g. in radiation) for plasma instabilities, shock formation, and shock structure to make connection with observations?
- How the structure of the fields determines particle acceleration/Fermi acceleration?

Relevance

Relativistic flows & shocks

Scientific Questions

Instabilities, B-fields and particle acceleration

Possible directions

Theory, simulations and experiments

Summary

Some theoretical directions to explore

- Linear theory of beam instabilities has been explored in detail but with some recent surprises (e.g. mixed mode, space charge effects, collisionless-collisional transition)
- Multi-dimensional analysis required for most of the scenarios (e.g. in relativistic magnetized shocks)
- Spatio-temporal multi-dimensional theory required to understand precursor region ("head to tail dynamics")

Massivelly parallel PIC & next generation of HPC

New directions

New Hardware

SSE, GPUs

"Extended" Physics

Integrated PIC-hybrid

Radiation reaction

Pair production

Photon Dynamics

Multi-scale modeling

Enhanced Data Mining

Noise reduction

Subtraction techniques

Data reduction (fields)

Data mining (particles)

Advanced Visualization

Workflows for HPC

Simulations drive recent developments and provide connection with observations and reduced models

- Ab initio modeling of instabilities and shocks driven by relativistic flows [instabilities: Silva et al 03, Frederiksen 04; shocks: Spitkovsky 08]
- Provide **radiation signatures** of plasma instabilities, shock structure, particle acceleration
 [Sironi & Spitkovsky 09, Martins et al 10, Nishikawa et al 09]
- Support for design of experiments and interpretation of results
- Ab initio calculation of transport coefficients for cosmic ray acceleration reduced models [in progress]

Tech developments have triggered new avenues for plasma physics

Lasers and supercomputers

'09 Peak laser intensity ~ 10^{22} W/cm²

Pulse duration $\sim 100 \text{ fs} - 1 \text{ ps}$ E $\sim 10 \text{ smJ} - \text{kJ}$

'09 Peak computing power > I Tflop/s

Laser-plasma accelerators can provide GeV beams

Experimental Design

Formation and propagation of Weibel mediated collisionless shocks

H. Takabe et al, PPCF 50, 124057 (2008)

H. Takabe

Recent developments Youichi Sakawa et al, APS DPP (2010)

Launching shocks with ultra-intense lasers

Physical Parameters

Laser

- $\lambda_0 = I \mu m$
- $I_0 = 5 \times 10^{19} 5 \times 10^{21} \text{ Wcm}^{-2}$
- plane polarized

Plasma

- 56 μm x 16 μm
- \bullet m_i/m_e = 3672 (D⁺)
- $T_{i0} = T_{e0} = 100 \text{ eV}$

Numerical Parameters

- \bullet Δx_{\perp} $k_p = 0.5 1.5$
- $\Delta z k_p = 0.5 1.5$
- Particles per cell = 64
- # particles = 5×10^9
- # time steps = 10^5

F. Fiúza et al, in preparation (2010)

Relativistic shock launched @ ultrahigh intensities

Shock jump conditions verified

^{*}S. C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992)

^{**} R. D. Blandford and C. F. Mckee, Phys. Fluids 19, 1130 (1976)

Relevance

Relativistic flows & shocks

Scientific Questions

Instabilities, B-fields and particle acceleration

Possible directions

Theory, simulations and experiments

Summary

Summary

Key questions: microphysics on shocks

- ▶ Shock formation \Rightarrow range of conditions for shocks
- ▶ Particle acceleration ⇒ fields @ shock front for Fermi acceleration
- ▶ Magnetic field amplification \Rightarrow restriction on fields and $f_{e,i}(p,r)$
- ▶ Energy exchange between species \Rightarrow restriction on $f_{e,i}(p,r)$

PIC Simulations

- ▶ Multi-dimensional modeling of instabilities and shocks
- \blacktriangleright Multi-scale modeling \Rightarrow Transport coefficients for CR reduced models
- \blacktriangleright Radiation signatures \Rightarrow Connection with astro observations

Experiments with ultra-intense lasers

- ightharpoonup e- beams \Rightarrow early stage of the instabilities
- ▶ Plasma flows ablated by lasers \Rightarrow shock formation
- ▶ Flow driven by intense lasers \Rightarrow shock propagation/particle acceleration (?)
- ▶ Benchmark & code validation