Astrophysical collisionless shocks

Anatoly Spitkovsky

Astrophysical shocks are collisionless

Shocks span a range of parameters: nonrelativistic to relativistic flows

magnetization (magnetic/kinetic energy ratio)

composition (pairs/e-ions/pairs + ions)

Astrophysical shocks are collisionless

Shocks span a range of parameters: nonrelativistic to relativistic flows

magnetization (magnetic/kinetic energy ratio)

composition (pairs/e-ions/pairs + ions)

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Power law spectra of synchrotron emission are observed in PWNs, SNRs, AGNs, GRBs

Thin synchrotron rims in young SNRs and their TeV emission imply > 10TeV electrons

SNRs show direct evidence of CR acceleration (shock modification); ~10% energy in CRs; CRs up to 10¹⁵eV thought to come from SNRs.

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Power law spectra of synchrotron emission are observed in PWNs, SNRs, AGNs, GRBs

Thin synchrotron rims in young SNRs and their TeV emission imply > 10TeV electrons

SNRs show direct evidence of CR acceleration (shock modification); ~10% energy in CRs; CRs up to 10¹⁵eV thought to come from SNRs.

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Power law spectra of synchrotron emission are observed in PWNs, SNRs, AGNs, GRBs

Thin synchrotron rims in young SNRs and their TeV emission imply > 10TeV electrons

SNRs show direct evidence of CR acceleration (shock modification); ~10% energy in CRs; CRs up to 10¹⁵eV thought to come from SNRs.

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Synchrotron afterglow emission from GRBs implies at least 1% of kinetic energy in the magnetic field after the external shock.

Upstream magnetization is essentially zero.

Thinness and variability of synchrotron rims. SNRs imply fast cooling time -- constrains magnetic fields ~100 microG >> than expected from shock compression alone.

Astrophysical collisonless shocks can:

- accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

Shock jump conditions suggest that $kT_{i,e}\sim m_{i,e}\ v_{sh}^2$ (equilibrate due to collisions or plasma physics)

GRB observations suggest large fraction of energy in electrons after relativistic shocks (~10%)

Spectral fits of SNRs (Ballmer lines) allow measurement of $T_{\rm e}$ and $T_{\rm i}$, suggesting velocity-independent electron heating (Ghavamian et al 2007, Heng et al 2008).

Astrophysical collisonless shocks can:

- 1. accelerate particles
- 2. amplify magnetic fields (or generate them from scratch)
- 3. exchange energy between electrons and ions

[external shock wave]

(Ghavamian et al 2007)

What is the structure of collisionless shocks? Do they exist? How do you collide without collisions?

Particle acceleration -- Fermi mechanism? Other? Efficiency?

Generation of magnetic fields? GRB/SNR shocks, primordial fields?

Equilibration between ions and electrons?

What is the structure of collisionless shocks? Do they exist? How do you collide without collisions?

Particle acceleration -- Fermi mechanism? Other? Efficiency?

Generation of magnetic fields? GRB/SNR shocks, primordial fields?

Equilibration between ions and electrons?

All are coupled through the structure of turbulence in shocks and acceleration

Free energy: converging flows

Acceleration mechanisms:

- First order Fermi
 - Diffusive shock acceleration
 - Shock drift acceleration
 - Shock surfing acceleration
- Second order Fermi

Free energy: converging flows

Acceleration mechanisms:

- First order Fermi
 - Diffusive shock acceleration
 - Shock drift acceleration
 - Shock surfing acceleration
- Second order Fermi

Efficient scattering of particles is required. Monte Carlo simulations of rel. shocks show that this implies very high level of turbulence $\delta B/B(Ostrowski\ et\ al)$. Is this realistic? Are there specific conditions?

Free energy: converging flows

Acceleration mechanisms:

- First order Fermi
 - Diffusive shock acceleration
 - Shock drift acceleration
 - Shock surfing acceleration
- Second order Fermi

Efficient scattering of particles is required. Monte Carlo simulations of rel. shocks show that this implies very high level of turbulence $\delta B/B(Ostrowski\ et\ al)$. Is this realistic? Are there specific conditions?

Requires turbulence for injection into acceleration process and to stay near the shock

Free energy: converging flows

Acceleration mechanisms:

- First order Fermi
 - Diffusive shock acceleration
 - Shock drift acceleration
 - Shock surfing acceleration
- Second order Fermi

Efficient scattering of particles is required. Monte Carlo simulations of rel. shocks show that this implies very high level of turbulence $\delta B/B(Ostrowski\ et\ al)$. Is this realistic? Are there specific conditions?

Requires turbulence for injection into acceleration process and to stay near the shock

Needs spectrum of turbulent motions (waves) downstream.

Free energy: converging flows

Acceleration mechanisms:

- First order Fermi
 - Diffusive shock acceleration
 - Shock drift acceleration
 - Shock surfing acceleration
- Second order Fermi

Efficient scattering of particles is required.

Monte that th turbularealist

We need to understand the microphysics of collisionless shocks:

now

Requi accele shock

with plasma simulations e with experiments with space observations

Needs

(wave<mark>s) downstream.</mark>

Computer simulations of shocks

Rapid expansion of computer capcity in recent years has allowed the study of collisionless shocks from first principles in multi-dimensions via PIC and hybrid simulations.

Largest simulations 1024x1024x10000, 4e10 particles, or 8000x200000 in 2D. Typical scales 200^2x2000 (c/ ω_{pe}). mi/me from 1 to 1000. Run times in 2D 10^4 1/ ω_{pe} . Papers by Spitkovsky et al, Silva et al, Nishikawa et al, Hoshino et al. Results are now being confirmed by independent groups.

Monday, January 18, 2010

Computer simulations of shocks

Rapid expansion of computer capcity in recent years has allowed the study of collisionless shocks from first principles in multi-dimensions via PIC and hybrid simulations.

Largest simulations 1024x1024x10000, 4e10 particles, or 8000x200000 in 2D. Typical scales 200^2x2000 (c/ ω_{pe}). mi/me from 1 to 1000. Run times in 2D 10^4 1/ ω_{pe} . Papers by Spitkovsky et al, Silva et al, Nishikawa et al, Hoshino et al. Results are now being confirmed by independent groups.

Parameter space of collisionless shocks

Properties of shocks can be grossly characterized by several dimensionless parameters:

Alfven Mach

$$M_A = \frac{v}{v_A}$$

$$r = \frac{m_i}{m_e}$$

fven Mach number $M_A=rac{v}{v_A}$ Composition $r=rac{m_i}{m_e}$ Sonic Mach number $M_s=rac{v}{c_s}$

$$M_s = \frac{c}{c_s}$$

Magnetization

$$\sigma \equiv \frac{B^2/4\pi}{(\gamma - 1)nmc^2} = \frac{1}{M_A^2} = \left(\frac{\omega_c}{\omega_p}\right)^2 \left(\frac{c}{v}\right)^2 = \left[\frac{c/\omega_p}{R_L}\right]^2$$

Parameter space of collisionless shocks

Properties of shocks can be grossly characterized by several dimensionless parameters:

Alfven Mach

$$M_A = rac{v}{v_A}$$

$$r=rac{m_i}{m_e}$$

fven Mach number $M_A=rac{v}{v_A}$ Composition $r=rac{m_i}{m_e}$ Sonic Mach $M_s=rac{v}{c_s}$

$$M_s = \frac{c}{c_s}$$

Magnetization

$$\sigma \equiv \frac{B^2/4\pi}{(\gamma - 1)nmc^2} = \frac{1}{M_A^2} = \left(\frac{\omega_c}{\omega_p}\right)^2 \left(\frac{c}{v}\right)^2 = \left[\frac{c/\omega_p}{R_L}\right]^2$$

$$\omega_c = \frac{qB}{\gamma mc}$$

$$\omega_p = \left(\frac{4\pi q^2 n}{\gamma m}\right)^{\frac{1}{2}}$$

Open issues:

What is the structure of collisionless shocks? Do they exist? How do you collide without collisions?

Particle acceleration -- Fermi mechanism? Other? Efficiency?

Equilibration between ions and electrons?

Generation of magnetic fields? GRB/SNR shocks, primordial fields?

Open issues:

What is the structure of collisionless shocks? Do they exist? How do you collide without collisions?

Particle acceleration -- Fermi mechanism? Other? Efficiency?

Equilibration between ions and electrons?

Generation of magnetic fields? GRB/SNR shocks, primordial fields?

Open issues:

What is the structure of collisionless shocks? Do they exist? How do you collide without collisions?

Particle acceleration -- Fermi mechanism? Other? Efficiency?

Equilibration between ions and electrons?

Generation of magnetic fields? GRB/SNR shocks, primordial fields?

B

Density

 B^2

mi/me=400, v=18,000km/s, Ma=5, quasi-perp 75° inclination

<Density>

x-p_x ion

x-p_x e⁻ B_z

 T_e , T_i T_e/T_i

Shock foot, ramp, overshoot, returning ions, electron heating, whistler(?) waves.

mi/me=400, v=18,000km/s, Ma=5, quasi-perp 75° inclination

Shock foot, ramp, overshoot, returning ions, electron heating, whistler(?) waves.

A B

mi/me=100, v=18,000km/s, Ma=45 quasi-perp 75° inclination

Nonrelativistic shocks: quasiparallel shock structure

mi/me=30, v=30,000km/s, Ma=5

Nonrelativistic shocks: acceleration

Acceleration of electrons and ions occurs in different regimes!!!

Electrons are accelerated in quasi-perp shocks, ions in quasi-parallel shocks

quasi-perpendicular shock

quasi-parallel shock

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (VA~ Vd,CR), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (VA~ Vd,CR), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (V_A~ V_{d,CR}), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

Cosmic ray current J_{cr}=en_{cr}v_{sh}

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (V_A~ V_{d,CR}), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

$$k_{\text{max}} c = 2\pi J_{\text{cr}}/B_0$$

 $\gamma_{\text{max}} = k_{\text{max}} V_{\text{Alfven,0}}$

Need magnetized plasma: ωci>>γmax

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (VA~ Vd,CR), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

$$k_{\text{max}} c = 2\pi J_{\text{cr}}/B_0$$

 $\gamma_{\text{max}} = k_{\text{max}} V_{\text{Alfven,0}}$

Need magnetized plasma: $\omega_{ci} >> \gamma_{max}$

CR accelerating shocks can cause a current of protons to propagate through the upstream. Bell (04, 05) found an MHD instability of CRs flying through magnetized plasma.

The interaction is nonresonant at wavelength << Larmor radius of CRs.

We simulated this instability with PIC in 2D and 3D (Riquelme and A.S. 09)

Saturation is due to plasma motion (V_A~ V_{d,CR}), or CR deflection; for SNR conditions expect ~10 field increase.

Bell's nonresonant CR instability

$$k_{\text{max}} c = 2\pi J_{\text{cr}}/B_0$$

 $\gamma_{\text{max}} = k_{\text{max}} V_{\text{Alfven,0}}$

Need magnetized plasma: $\omega_{ci} >> \gamma_{max}$

B field amplification: 3D runs

Bell's nonresonant CR instability

(Riquelme and A.S. 2009 ApJ)

Field amplification of ~10 in SNRs can be due to Bell's instability

key unknowns/opportunities

- Acceleration and shock structure as a function of upstream parameters + turbulence
- Field amplification and back-reaction of the shock on the upstream
- Electron heating and energy exchange

With these processes we can constrain astrophysical theories and explain a plethora of observations

key unknowns/opportunities

- Acceleration and shock structure as a function of upstream parameters + turbulence
- Field amplification and back-reaction of the shock on the upstream
- Electron heating and energy exchange
 - With these processes we can constrain astrophysical theories and explain a plethora of observations

Shocks connect microphysics with large scale astrophysics