
 PPPL Fall/Winter CO-OP 2008-09
Savraj Deep

Focus of the CO-OP
The co-op focused on improving various graphical elements of ElVis,
an application for the visualization and monitoring of scientific data.

Fig 1. A Snapshot of ElVis

Areas of Attention
➢  Fixing legend, Graph Panel

resizing and other issues
➢  Plotting multiple animated f(x.t)

variables simultaneously
➢  ColorMap smooth shading
➢  Saving ColorMap legend

preferences
➢  Implementing filmstrip view
➢  Explore potential OpenGL

implementation of surface maps
➢  Installing NVIDIA’s CUDA

(Compute Unified Device
Architecture) libraries.

Fixing legend and other issues
•  The legend had various issues, such as a

dysfunctional scroll and erroneous movement
around the graph panel.

•  The graph panels had resizing problems and
failed to recognize certain movements that
had to be fixed.

•  These issues were fixed to make the legend
and Graph Panels move as desired.

•  The user is now able to select the desired
background color for the Graph Panels.

•  The PDF file that prints the graphs now reads
in the new colors and prints out the graph in
the desired format.

Multiple animated f(x,t) data plotting
➢  Elvis could previously load just one f(x.t) data

variable and did not draw two or more of these
on the same Graph Panel when selected.

➢  Plotting of multiple f(x,t) data was implemented
which could be animated as well.

➢  To implement this, multiple f(x,t) data of the
same type are selected and plotted. The legend
displays the different data points as different
colours that can be highlighted and selected.

➢  The data can be animated as in the case of a
single f(x,t) data variable. In this case, multiple
data can be animated simultaneously.

Plotting Multiple f(x,t) Variables

ColorMap Smooth Shading
•  The resolution of ColorMaps was increased

by liner interpolation
•  Issues with respect to loading of data in

ColorMap plots were fixed
•  The resolution or degree of interpolation of

the new ColorMaps can now be increased or
decreased as desired, whereby the optimal
balance between performance and speed can
be achieved.

•  The color scheme that the users select for a
particular ColorMap graph can now be saved
permanently when the graph is saved.

ColorMap Comparison

ColorMap Comparison 2

Implementing filmstrip view
•  Filmstrip View was proposed. The framework was laid out but we couldn't get the graphs to load in the lower

part of the screen.

➢  Graphs Could not be loaded here

OpenGL (JOGL) – What is it ?
➢  JAVA OpenGL (JOGL) is a wrapper

library that allows OpenGL to be used in
the JAVA programming language.

➢  Allows access to most features
available in the C programming
language.

➢  SUN supported.

JOGL for surface plot rendering
➢  Explored potential implementation of

Java Open Graphics Library for
implementation of surface plots.

➢  The present implementation uses
expensive software computation to
render the plots.

➢  Using JOGL would shift the weight onto
faster hardware rendering resulting in
faster loading and rendering of surface
plots.

➢  Various open source platforms already
exist that could help with this. ZG3D is
one of the examples that was looked at.

Lightweight vs. Heavyweight

➢  Graphics in JOGL can be implements as
heavyweight or lightweight
components.

➢  The heavyweight component is
GLCanvas and the lightweight
component is GLJPanel.

➢  GLCanvas is the preferred method of
implementation and is faster than
GLJPanel but heavyweight windows
cause some graphical artefacts.

➢  Good News : Lightweight and
Heavyweight components in JOGL code
are quite easily interchangeable with a
high degree of inter-compatibility.

Heavyweight Drawing(GLCanvas)

Lightweight Drawing(GLJPanel)

SWOGL – Swing on JOGL in 3-D

SwoglComponent class displays any Swing
 component in 3-D.
Basis for new user interface paradigms.

NVIDIA’s CUDA
➢  CUDA(Compute Unified Device Architecture) is a

parallel computing architecture developed by NVIDIA.
➢  Accessible to programmers through standard

programming languages.
➢  Native implementation in C.
➢  Offers both low level and a higher level API.
➢  JAVA has open source implementations of CUDA. Eg –

JCublas and JCufft.
➢  If used properly, the implementation of CUDA can

speed up several processes.
➢  Drawbacks - CUDA enabled card must be present.

Only (relatively) new NVIDIA cards supported, and no
ATI cards supported.

JCublas and JCufft

➢ JCublas provides JAVA bindings for
 the NVIDIA CUDA BLAS(Basic
 Linear Algebra Subprograms).
 implementation, thus making the
 parallel processing power of modern
 graphics hardware available for
 JAVA programs.

➢ JCufft provides JAVA bindings for
 the NVIDIA CUDA Fast Fourier
 Transforms(FFT) implementation.

Summary

➢ Multiple 2D animated variable plotting

➢ Fixing graphical issues

➢ Potential OpenGL implementation of
 Surface Plots

➢ Colormap smooth shading and
 preference saving implementation

➢ Fixing issues with PDF printing and fixing
 resizing and color selection issues

➢ Exploring NVIDIA’s CUDA.

Thank You
•  In particular, I'd like to thank

Eliot Feibush, Doug McCune,
Drexel University and the
Princeton Plasma Physics Lab.

