
Framework efforts for the
Fusion Simulation Project Planning

John R. Cary
Lead PI, FACETS
cary@txcorp.com

The FSP Framework Planning Work
Product should be a convincing plan for
developing a comprehensive predictive
capability that can address the physics
problems important to achieving fusion as
an energy source.
•Ability to predict requires incorporability
and, ultimately, incorporation of the
highest fidelity components
•Confidence in prediction comes from V&V

The highest fidelity computations require
• Mastery of detail
oNot just the zoo of plasma phenomena
oBut also that in conjunction with
 Atomic physics
 Controls
 Materials

• Parallel computations
oMessage passing, distributed memory
oDelegation to accelerators (e.g., GPUs) that

require massive use of threads
• Flexibility
oWe already see new computational architectures

on the horizon
oWe will have to incorporate new components as

they become available

Framework (in the broadest sense): how
will we build this?

• What methodologies will we use?
• How will we assure that the software fits together?
• How will we avoid the maintenance trap?
• How can we achieve sufficient abstraction to have

minimal code while having sufficient specificity to
have a useful product?

This is a broader definition that generally used by the
Computer Science (CS) community.

What is a software framework?
Wikipedia: A software framework, in computer programming, is an

abstraction in which common code providing generic functionality can
be selectively overridden or specialized by user code providing specific
functionality. Frameworks are similar to software libraries in that they are
reusable abstractions of code wrapped in a well-defined API.

Software frameworks have these distinguishing features that separates
them from libraries or normal user applications:

1. inversion of control - Unlike libraries or normal user applications, in a
framework the overall program's flow of control is not dictated by the
caller, but by the framework.[1]

2. default behavior - A framework has a default behavior. This default
behavior must actually be some useful behavior and not a series of no-
ops.

3. extensibility - A framework can be extended by the user usually by
selective overriding or specialized by user code providing specific
functionality

4. non-modifiable framework code - The framework code, in general, is not
allowed to be modified. Users can extended the framework, but not
modify its code.

Framework

What is a software framework?
http://www.codeproject.com/KB/architecture/WhatIsAFramework.aspx

• it makes it easier to work with complex technologies
• it ties together a bunch of discrete objects/components into something

more useful
• it forces the team (or just me) to implement code in a way that promotes

consistent coding, fewer bugs, and more flexible applications
• everyone can easily test and debug the code, even code that they didn't

write
A Framework has

• wrappers. A wrapper:
 o simplifies an interface to a technology
 o reduces/eliminates repetitive tasks
 o increases application flexibility through abstraction
 o are often re-usable regardless of high level design considerations
• architectures. An architecture:
 o manages a collection of discrete objects
 o implements a set of specific design elements
• methodologies: A methodology:
 o enforces the adherence to a consistent design approach
 o decouples object dependencies
 o are often re-usable regardless application requirements

Framework: reminiscent of the 9 blind
men and the elephant

• “Little-f” framework = Infrastructure
oMethodologies
oBuild systems
oWorkflow tools
oExamples: CORBA, ESMF
• “Big-F” Framework = Superstructure
oCode for bringing components into a combined

application
oStandards that allow components to be brought into

a Framework
oExamples: FACETS, CCSM, ESMF

Autotools (autoconf, automake, libtool) is a Framework for cross-
platform code building, but it can be part of a framework

Goal: a Framework capable of running
highest fidelity components

Core-Edge-Wall
communication is
interfacial

Core-Edge-Wall
communication is
interfacial

Sub-component
communications
handled
hierarchially

Sub-component
communications
handled
hierarchially

Neutral Beam Sources (NUBEAM)

…

Components use
their own internal
parallel
communication
pattern

Components use
their own internal
parallel
communication
pattern

Edge (e.g.,Uedge) Wall
 (e

.g.
 W

all
Psi

The framework must accept
components of multiple languages

• http://en.wikiquote.org/wiki/Larry_Wall#.22Present_Continuous_-_Future_Perfect.22
• And C was good at something I like to call manipulexity, that is the manipulation of

complex things. While shell was good at something else which I call whipuptitude, the
aptitude for whipping things up.

• "We've got to start over from scratch" - Well, that's almost any academic language you find.
• "English phrases" - Well, that's Cobol. You know, cargo cult English.
• "Text processing doesn't matter much" - Fortran.
• "Simple languages produce simple solutions" - C.
• …
• "This is a very high level language, who cares about bits?" - The entire scope of fourth

generation languages fell into this... problem.
• …
• "Let's make this easy for the computer" - Lisp.
• "Most programs are designed top-down" - Pascal.
• "Everything is a vector" - APL.
• "Everything is an object" - Smalltalk and its children. (whispered:) Ruby.
• "Everything is a hypothesis" - Prolog.
• "Everything is a function" - Haskell.
• "Programmers should never have been given free will" - Obviously, Python.

A Framework contains a workflow, it is
not a workflow

• Workflow: a series of separable actions to get from
problem definition to human interpretable data
• Framework: one or both of
oSuperstructure by which one couples together

components (objects, modules, …)
o Infrastructure on which one builds components

(not often cleanly separable)

that allows components to be executed conditionally
and composed abstractly.

a/g eqdsk

fluxgrid

fluxgrid input file

FACETS

pre file
fragments

pre file

txpp

main
input file

component
def. files

2D geom
file

main
output file

component
output files

core2vsh5

Black: Fixed form ascii
Green: free-form ascii

Blue: HDF5, VisSchema Compliant
Red: Application

profiles
in 2D

matplotlib, VisIt

FACETS workflow: buckets of bits
from eqdsk to viz

THE FSP Planning Proposal has the
following items

• Assess past integrated modeling efforts
• Assess existing proto-FSPs
• Determine needed couplings
• Determine execution models
• Determine needed algorithms
• Design verification plan
• Determine software standards
• Assess existing components for use within a

framework
• Technology and structure adoption
• Determine workflow needs, settle on workflow

tools

Framework efforts broken down

• Management (1 unit, Cary)
oSets goals, oversight, decision framework
• Framework evaluation and design (2 units, Siegel,

others at Tech-X)
• Assessment of user needs (1 unit, R Cohen)
o Interviews, reports
oMust assess all stakeholders (ASCR, users, …
• Software engineering (1 unit, Van Straalen):

evaluate tools

Management sets overall decision
framework

• What is allowed or not?
• Provide vision
• Set agendas (includes goals)
• Who needs to be involved in decisions?
• Monitor progress
• Present results

Will assess user needs (R Cohen)

• Work with Physics needs (Kritz) to prioritize
physics needs
oWhat is the minimal tool that the community will find

useful?
oWhat is the timeline for tool inclusion
• Determine user needs
oHow do they work? (Involves where as well)
oWhat do they need? (physics, problem setup tools,

postprocessing, visualization)
oHow does this vary depending on the level of user?
 User
 Builder (expert)
 Knows 1 system, all OS’s

Framework 1: evaluate previous frameworks,
set goals for framework, ultimately design

• Integrated modeling has a long history
oBALDUR, pTRANSP
• Fusion proto-FSPs: CPES, FACETS, SWIM
oEach currently publishing papers on their

frameworks
• Non fusion frameworks
• Determine needed couplings
• Algorithmic needs

Framework 2: assess components, efforts
to make

• Work with X. Tang
• Components from legacy code
o https://www.facetsproject.org/facets/wiki/ComponentsFromLegacyCode
o What components do we need?
o How long to make a component from legacy code?
o

• New components
oHow long to create? (Concept to first physics)

Software engineering: tools and
methodologies

• Technology and structure adoption
oBuild (autotools? Cmake?)
oOutput (HDF5, schema)
oWorkflow
oViz
• Determine software standards
oFormatting
o“No calls to exit!”
• Verification plan (work with Greenwald)
oData access methodology

Deliverable of the Framework Effort

• What to build
• How to build
• What to build first

No funds yet in Boulder, but
• Discussion with team subgroup leaders

(Cary, Siegel, Cohen, Van Straalen)
• Request input on their tasks
• Progress reports, reassess, move ahead

Initial tasks
• Review with team. Initial meeting tonight.
• Begin assessment of user needs
oWhat early deliverables could make the project a

success in the eyes of modelers?
• Define what we want from other teams
oMultiple candidates for near-term capabilities from

science drivers
oWhat is the status of components?
• At the same time, we can move ahead with cross

cutting assessments
oWhat are other frameworks doing?
oWhat is the status of components with regard to

inclusion in framework

