Projects to help jumpstart FSP

Scott Kruger Tech-X Corporation kruger@txcorp.com

New projects

Тесн

Argonne LATIONAL LATONALONAL COLORADO

GENERAL ATOM

om

ParaTool

PPPI

 Standardized momentum transport interfaces Solvers for stiff transport systems Free-boundary equilibrium code

Currently funded projects Standardize synthetic diagnostic tools Automate sensitivity analysis

- FMCFM has standardized the input and output fluxes for many common models within the fusion community:
 - GLF23
 - NCLASS
 - ...

Argonne

om

ParaTool

PPPI

 • Interface aimed at easing parallel flux calculations from the beginning.

- Has been extended to include the GA codes:
 - GYRO
 - NEO
 - TGLF
- Used by all proto-FSPs and others:
 - FACETS, SWIM, CPES, (p)TRANSP (to be done)

Standardize Transport Models with Momentum Fluxes

Goal<u>:</u>

Тесн

Argonne

Colorado State

GENERAL ATOM

orn

ParaTools

◄

UCSD

To better enable standardized methods for momentum transport modeling

Issues:

- Models for momentum drag due to non-axisymmetric fields are being developed, but not widely available to transport codes
- Calculating the correct contributions to transport codes from gyrokinetic turbulent codes requires mathematical development
- Need to handle different equations used in modeling momentum transport

Approach<u>:</u>

- Propose collaboration between Tech-X, General Atomics, Lehigh, PPPL, UW-Madison to extend current FMCFM to allow all transport codes to use standardized models for momentum transport
- Deliverable is extension of FMCFM library to provide wide range of support for momentum transport studies

Beneficiaries:

 Current FMCFM customers: FACETS, SWIM (TSC), CPES (XGC0), TRANSP/pTRANSP

Developing a core transport solver for FSP and the fusion community

A core solver is needed to advance electron/ion temperatures, densities, momenta, and magnetic flux

- Currently there is <u>no core solver available</u> in the fusion community combining all of the following <u>key features</u>:
 - •Parallel and scalable (LCF friendly)
 - •Flexible to handle multiple ion species, impurities, ...
 - •Accurate for large time steps ~ O(transport time)
 - •Robust to handle strong nonlinearities in flux/source calculations
 - •Portable to run within FSP <u>and</u> other proto-FSP environments, e.g. pTRANSP

TECH

Argonne

Colorado State

GENERAL ATOMI

om

ParaTools

◄

UCSD

Leveraging FACETS for the development of a new core transport solver

Parallelism: flux and source computation run as separate processes

Flexibility: multi-component/multi-equation Application Programming Interface (API)

- Accuracy: implicit time advance (e.g. Diagonally implicit Runge-Kutta)
- Robustness: nested, multigrid iteration using SNES/PETSc solver
 - Portability: Fortran and C/C++-callable API (To do)

CH-X CORPORA

Beneficiaries: FSP, pTransp, SWIM, FACETS

Тесн

Argonne

Colorado State

GENERAL ATOM

Parallel, free-boundary equilibrium solver

H-X CORPORA

- Use cases:
 - Core-edge coupling
 - Controls

Argonne

Colorado State

GENERAL ATON

PPP

- Previous: TEQ, DINA, unmaintainable?
- Approach:
 - Domain decomposition
 - -RZ plane
 - Multigrid, grid sequencing methods
- Beneficiaries:
 - Entire community

Need for fusion applicable (specific?) parallel data redistribution layer

Take data from computational by-processor layout toflux-surface data alignment and vice-versa

MxN

Use cases:

Argonne

orn Outbook

PPP

UCSD

Office of

- Monte Carlo collection of energetic particle data
- Flux surface magnetic data needed for equilibrium transport codes
- Approach:
 - Layer for data reorganization
 - Initially with existing MPI calls
- Beneficiaries:
 - All parallel integrated modeling codes
 - Energetic particle codes

Block of data o

Standardize Synthetic Diagnosis

Use case:

TECH

Argonne

Colorado State

GENERAL ATOM

om

ParaTool

PPPL

 Instead of doing one-offs for code and machine, allow all

- GK codes to generate BES synthetic diagnostics
- extended MHD codes to generate soft X-Ray diagnostics machine
- RF code to generate PCI synthetic diagnostic for any machine.

• Approach:

- Abstract geometry information for real diagnostic
- Abstract description of synthetic diagnostic generation
- Provide workflow tools for generating synthetic diagnostic
- Beneficiaries:
 - GK, MHD, and RF codes, and any project that uses their components
 - C. Holland's (GA) synthetic diagnostics for turbulence modeling is an excellent example.

Automating Sensitivity Studies For Fusion Codes

DAKOTA tool developed to provide infrastructure for doing sensitivy studies

Provide methods for setting up large scans Provide methods for statistically analyzing results Provide methods for optimization

Propose to enable use of DAKOTA for FACETS and SWIM

- Working with SWIM/FACETS input files, simplify DAKOTA setup
- Working with SWIM/FACETS output files, simplify the statistical analysis

CH-X CORPORA

Apply DAKOTA to particular cases

Тесн

Argonne

om

Paratools PPPL

◄

UCSD