MHD Codes - Scalability

Ravi Samtaney

Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University

> FSP Kickoff Meeting July 15-16 2009, Princeton, NJ

MHD Codes

- Classification
 - Toroidal vs. slab
 - Explicit, semi-implicit, implicit
 - Physics capability: resistive MHD, two-fluid MHD, extended MHD (including gyroviscous stress tensor)
 - Order of accuracy
 - Finite elements, finite difference, finite volume, spectral element
- A variety of MHD codes exist within DOE labs
- Exercise: determine precisely the strengths and weaknesses of MHD codes vis-à-vis scalability on petascale platforms and beyond and physics capability so these codes can be effectively used within the FSP

MHD Codes

Name	Geometry	Physics	Time stepping	Discretization	Accuracy	Comments	
M3d	Torus	Extended	SI	FE/FD	2nd	Work-horse; Hodge decomp. Imp in FC	
NIMROD	Torus	Extended	Implicit	FE/SE/FFT	Any? 4th	Work-horse; Implicit - supraLU	
M3d-C1	Torus	Extended	SI	FE/FFT	4th/5th	C1; Formulation allows diff. MHD models	
SEL	Slab	Two-fluid	Implicit	SE	Any?	JFNK; FETI-DP precon	
AMR-MHD	Torus	Resistive	Explicit	FV	2nd	Used for pellet injection	
JFNK-C	Torus	Two-fluid	Implicit	FD	2nd	JFNK- MG precond	
JFNK-PS	Slab	Resistive	Implicit	FE	2nd	JFNK - black-box prec	
JFNK-RSW	Torus	Resistive	Implicit	FV/FD	2nd/4th	JFNK- directional split; eigen-structure precon	
MHD-Allspeed	Slab	Resistive	SI	FV	2nd	Analy. sep. of scales; a la low-M projection	
LB	Slab	Resistive	Explicit	?	?	Unknown entity	
DG MHD	Slab	Resistive	Explicit	FV	Any	C -1 cont; limiters	

MHD Physics

- Resitive MHD
 - the smallest scale is determined by a single non-dimensional number, i.e., the Lundquist number (scales as S^{-1/2})
 - Meaningless to talk in terms of "ITER sized plasmas". Talk in term of S.
- Incorporate lowest order FLR corrections to resistive MHD equations result in changes to the electron momentum equations (generalized Ohm's law) and ion stress tensor
 - WW: Whister waves arise from JxB term in Ohm's law
 - KAW: Kinetic Alfven wave due to parallel electron pressure gradient in Ohm's law
 - GVW: GyroViscous waves associated with ion response, due to divergence of off-diagonal terms in the Gyroviscous stress tensor
- All these waves are DISPERSIVE ($\omega \propto k^2$)
 - Require implicit treatment

Model	Momentum	Ohm's Law	WW	KAW	GVW
General	$mn\frac{d\boldsymbol{v}}{dt} = -\nabla(p_e + p_i)$	$oldsymbol{E} = - v imes oldsymbol{B} + \eta oldsymbol{J}$	Yes	Yes	Yes
	$J imes B - abla \cdot (\Pi_{ e} + \Pi_{ i})$	$\frac{1}{n_e}(J \times B - \nabla p_e - \Pi_{ e})$			
	$- abla \cdot \Pi_i^{gv}$				
Generalized	$mn\frac{d\boldsymbol{v}}{dt} = -\nabla(p_e + p_i)$	$m{E} = -m{v} imes m{B} + \eta m{J}$	Yes	Yes	No
Hall	$J imes B - abla \cdot (\Pi_{ e} + \Pi_{ i})$	$\frac{1}{n_e}(J \times B - \nabla p_e - \Pi_{ e})$			
MHD					
Neoclassical	$mn\frac{d\boldsymbol{v}}{dt} = -\nabla(p_e + p_i)$	$m{E} = - m{v} imes m{B} + \eta m{J}$	No	No	Yes
MHD	$J imes B - abla \cdot (\Pi_{ e} + \Pi_{ i})$	$-\frac{1}{n_e}\Pi_{ e }$			
	$-\nabla \cdot \Pi_i^{gv}$				
Generalized	$mn\frac{dv}{dt} = -\nabla p$	$m{E} = -m{v} imes m{B} + \eta m{J}$	No	No	No
Resistive	$oldsymbol{J} imes oldsymbol{B} - abla \cdot \Pi_{ }$				
MHD					

What is relevant for ITER?

- What can or must (at first order) be modeled with MHD?
 - When is two-fluid/extended MHD important?
- Edge localized modes (ELMs)
 - Type I most detrimental. Triggers known
 - Other types: not so well-understood
 - ELM mitigation: pellet-induced, resonant magnetic perturbations
- Sawteeth
- Vertical displacement events (VDEs)
 - Needs coupling with other codes to model eddy currents
- Disruption mitigation
 - Noble gas injection is the preferred method
- Energetic particles
 - Coupling with gyrokinetic codes

Benchmark Case

- Sawtooth cycle: accurate prediction is an important test for nonlinear MHD codes
- Stresses the nonlinear codes
 - Long runs (~ 500-1000 τ_{4})
 - Runs need to be well-resolved for reconnection, and to get the period correct
- M3d and NIMROD have already done this benchmark test case
 - For CDX-U (Details in Breslau, Sovinec, Jardin, Comp. Phys. Comm. 2008)
 - Analytical equilibrium and all other parameters clearly specified which makes it easier to get started
 - $\kappa_{xx} = \kappa_{y}$ (parallel heat conduction turned on)

Quantity	Value			
Major radius R ₀	0.341 m			
Minor radius <i>a</i>	0.247 m (aspect ratio = 1.38)			
Ellipticity κ	1.35			
Triangularity δ	0.25			
Central temperature $(T_e = T_i)$	100 eV			
Normalized central pressure $\mu_0 p_0$	7.5×10^{-4} (implies $n_{e0} = n_{i0} = 1.863 \times 10^{19} \text{m}^{-3}$)			
α Parameter in pressure equation*	0.1			
Vacuum value g_0 of $\mathbb{R} \cdot \mathbb{B}_T$	0.04252 T·m			
Effective ion charge Z _{EFF}	2.0			
Loop voltage V _L	3.1741 V (implies $q_0 \approx 0.82$)			
$\psi(\psi) = p_0[\alpha \tilde{\psi} + (1-\alpha) \tilde{\psi}^2]$, where $\tilde{\psi} \equiv (\psi - \psi_{\text{limiter}}) / (\psi_{\text{axis}} - \psi_{\text{limiter}})$.				

Table 1: Parameters for the next equilibrium for the CDX-U sawtooth benchmark.

Benchmark Case - Two Phases

- Phase I: Correctness
 - Compare against M3d/NIMROD results
 - Time history of normalized kinetic energy for various toroidal mode numbers
 - Convergence: demonstrate that your code converges with the advertised order of accuracy
- Phase II: Scalability
 - This is a difficult issue because a code may be able to get the "correct" answer at a lower resolution than others
 - Should we test strong or weak scaling?
 - I prefer strong scaling for resistive MHD for a given S, the resolution requirements to resolve the internal layers can be estimated well. Then for a given resolution a code which exhibits strong scalability is better than a code which doesn't
 - Code comparison metrics
 - Wall-clock time; FLOPS; Work units
- Which codes are flexible to be easily adapted to the emerging (many-core multicore) architectures?
 - Adaptability to migrate to hybrid programming models (MPI + OpenMP, beyond ___MPI) will be very important

Remarks

- Code comparison exercises are useful but thankless tasks
 - Need real commitment (funding?) to do this
 - Recall that the M3D-NIMROD benchmark took > 1 year to accomplish
 - Jardin (email 07/15/09) "That sounds like a good idea. But, the nonlinear benchmarking exercises are time consuming and require resources. I would think they are better carried out under our SciDAC (where they are actually funded) rather than in the FSP planning program.
- Within the FSP, it is envisioned that there will be several opportunities for MHD
 - Coupling with several other codes in the context of ELMs, VDEs, mitigation disruption
- Need to identify strengths/weaknesses of existing codes to better utilize them within the FSP
- Scalability on extreme scale platforms will be essential
- The sawtooth benchmark test case is a good starting point
- Need to identify clear quantifiable metrics to compare MHD codes
 - Work units: number of times the nonlinear function gets called (useful, for example, to measure amount of work in nonlinear FAS MG codes, or _____JFNK codes)

8