
Multi-Tier Graphical Web Service for Simulating Reflectometry in Plasma

Eliot Feibush Gerrit Kramer Ernest Valeo Raffi Nazikian Douglas McCune
Princeton Plasma Physics Laboratory

Abstract
Building a web service around a physics simulation code written
in Fortran has been an effective approach for adding graphical
input, visualizing the output, and making the simulation available
to scientists. A multi-tier system was developed to optimize
computing and display resources while making minimal changes
to the original Fortran code. The amount of data in the simulation
exceeds the memory limit of applets running in browsers. This
limitation was overcome by compressing the data on the server
before transferring the data to the client. Displaying the results
involves blending images at varying resolutions that would also
exceed the memory limit of the applet for zoom in viewing
transformations. This was solved by mapping the target display
region to the source images and transforming only the visible
pixels to the blend buffer. A set of reusable scientific graphics
classes were developed for upgrading a number of other legacy
fusion codes.

Background and Related Work
Reflectometers are diagnostic instruments for fusion experiments.
The reflectometer emits radio frequency waves toward the plasma
and measures the amplitude of the reflected wave. Turbulence
and fluctuation in the plasma can be located by correlating the
reflection of different frequency waves. Reflectometers are
expensive to build and the number of experimental shots of
plasma for acquiring data are limited. Therefore simulating the
behavior of a reflectometer is essential before design, fabrication,
and deployment. A wave propagation code was written in
Fortran. Input and output were file based without any graphical
display. The goal was to add a graphical user interface to set up a
run, automate visualization of the output, and make it available to
physicists at different institutions running various computer
platforms.

The idea of an applet sending input to a simulation on a compute
server was proposed in [Fishwick 1996] soon after the
introduction of Java. The server side relied on scripting for
processing input forms from the applet. Scientific visualization
over the web was described in [Engel 1999] and articulated as a
problem solving environment in [Brodlie 2000]. They outline
several approaches for dividing the computing and the data
between the client and the server.

Multi-Tier Approach
The graphical user interface, Elfresco, was written in Java to
achieve portability of a single version to Windows, Macintosh,
and Linux operating systems. Elfresco runs on the scientist’s
personal computer to take advantage of the tightly coupled
graphics and achieves good interactive performance.

Implementing the Java program as an applet enables users to
access it through a web browser and then automatically run the
latest version without installing application software on their
computers. An applet has security restrictions so a Java servlet
was developed for controlling the simulation program and
accessing files on the server side. The applet sends requests to an
HTTP server which forwards them to a Tomcat servlet container
inside the firewall. Each run is set up and processed in a
protected directory on the server. Then it is listed and managed in
the run history window in the applet. For grid portal security each
user has an X.509 credential stored on a MyProxy server. The
user only enters a password and does not have to maintain any
certificate files because the servlet retrieves the credential.

Graphical Techniques
The input plasma contains 2-D cross sections of electron density,
temperature, and magnetic field strength. The reflection location
for a specific wavelength is calculated on the server and
visualized in the applet. This enables the user to efficiently
choose wavelengths for studying turbulence at a specific
reflection layer in the plasma.

The simulation outputs even larger amounts of 2-D data. The
entire input and output datasets are stored in double precision in
the run directory on the server. Only the data needed for display
is scaled to bytes and sent to the client where it is color-coded.
Blending the simulated reflection with the input is very effective
for visualizing the reflected waves, particularly when zooming in
to the data. There are 6 input images and 3 computed images that
can be displayed in any combination. The 2 selected images are
blended in an image buffer in the applet. However, zooming the
entire pair of images and then clipping to the display area would
require an image buffer exceeding the browser’s memory limit in
addition to being computationally inefficient. This problem was
solved by mapping the target display area to both of the selected
images and transforming only the visible pixels to the blend
buffer. This limits the image buffer to the size of the display area
yet enables interactively exploring the data at its full resolution.

The correlation between frequencies is calculated on the server
where all the data is accessible. The Java servlet creates a graph
object and sends it to the Java applet that has the corresponding
class methods for displaying and exploring the graph.

References
[Brodlie 2000] Brodlie, K., Visfiles: Harnessing the Web for
Scientific Visualization, In Computer Graphics, Vol. 34, Issue 1
(Feb. 2000), ACM, pp. 10-12.

[Engel 1999] Engel, K., Westerman, R., and Ertl, T., Isosurface
extraction techniques for Web-based volume visualization, In
Proceedings Visualization ’99, IEEE, pp. 139-146.

[Fishwick 1996] Fishwick, P., Web-Based Simulation: Some
Personal Observations, In Proceedings 1996 Winter Simulation
Conference, ACM Press, pp. 772-779.

