Introduction to Matrices and Linear Algebra
Matrices and Linear Algebra
%E^MATRIX([1,2],[3,4]) ==> MATRIX([%E,%E^2],[%E^3,%E^4])
In general, this transformation affects expressions of the form <base>^<power> where <base> is an expression assumed scalar or constant, and <power> is a list or matrix. This transformation is turned off if this switch is set to FALSE.
[2 1 - A -5 B ] (D2) [ ] [A B C ] (C3) ECHELON(D2); [ A - 1 5 B ] [1 - ----- - --- ] [ 2 2 ] (D3) [ ] [ 2 C + 5 A B ] [0 1 ------------] [ 2 ] [ 2 B + A - A]
(C1) ENTERMATRIX(3,3); Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General Answer 1, 2, 3 or 4 1; Row 1 Column 1: A; Row 2 Column 2: B; Row 3 Column 3: C; Matrix entered. [ A 0 0 ] [ ] (D1) [ 0 B 0 ] [ ] [ 0 0 C ]
(C1) H[I,J]:=1/(I+J-1)$ (C2) GENMATRIX(H,3,3); [ 1 1] [1 - -] [ 2 3] [ ] [1 1 1] (D2) [- - -] [2 3 4] [ ] [1 1 1] [- - -] [3 4 5]
EXPANDALL, EXPANDDOT, EXPANDDOTPLUS, EXPANDCROSS, EXPANDCROSSPLUS, EXPANDCROSSCROSS, EXPANDGRAD, EXPANDGRADPLUS, EXPANDGRADPROD, EXPANDDIV, EXPANDDIVPLUS, EXPANDDIVPROD, EXPANDCURL, EXPANDCURLPLUS, EXPANDCURLCURL, EXPANDLAPLACIAN, EXPANDLAPLACIANPLUS, EXPANDLAPLACIANPROD.
All these flags have default value FALSE. The PLUS suffix refers to employing additivity or distributivity. The PROD suffix refers to the expansion for an operand that is any kind of product. EXPANDCROSSCROSS refers to replacing p~(q~r) with (p.r)*q-(p.q)*r, and EXPANDCURLCURL refers to replacing CURL CURL p with GRAD DIV p + DIV GRAD p. EXPANDCROSS:TRUE has the same effect as EXPANDCROSSPLUS:EXPANDCROSSCROSS:TRUE, etc. Two other flags, EXPANDPLUS and EXPANDPROD, have the same effect as setting all similarly suffixed flags true. When TRUE, another flag named EXPANDLAPLACIANTODIVGRAD, replaces the LAPLACIAN operator with the composition DIV GRAD. All of these flags are initially FALSE. For convenience, all of these flags have been declared EVFLAG. For orthogonal curvilinear coordinates, the global variables COORDINATES[[X,Y,Z]], DIMENSION[3], SF[[1,1,1]], and SFPROD[1] are set by the function invocation