Introduction to Polynomials
 
 Polynomials
(C1) ISLINEAR(EXP,VAR):=BLOCK([C],
        C:BOTHCOEF(RAT(EXP,VAR),VAR),
        IS(FREEOF(VAR,C) AND C[1]#0))$
(C2) ISLINEAR((R**2-(X-R)**2)/X,X);
(D2)                              TRUE
(C1) COEFF(2*A*TAN(X)+TAN(X)+B=5*TAN(X)+3,TAN(X)); (D1) 2 A + 1 = 5 (C2) COEFF(Y+X*%E**X+1,X,0); (D2) Y + 1
(C1) CONTENT(2*X*Y+4*X**2*Y**2,Y); (D1) [2*X, 2*X*Y**2+Y].
(C1) DIVIDE(X+Y,X-Y,X); (D1) [1, 2 Y] (C2) DIVIDE(X+Y,X-Y); (D2) [ - 1, 2 X]
(Note that Y is the main variable in C2)
(C1) EXP1:2*X^2+Y*X+Z;
                                    2
(D1)                   Z + X Y + 2 X
(C2) EXP2:3*X+5*Y-Z-1;
(D2)                - Z + 5 Y + 3 X - 1
(C3) EXP3:Z^2+X-Y^2+5;
                       2    2
(D3)                  Z  - Y  + X + 5
(C4) ELIMINATE([EXP3,EXP2,EXP1],[Y,Z]);
            8         7         6          5          4
(D3) [7425 X  - 1170 X  + 1299 X  + 12076 X  + 22887 X
                               3         2
                       - 5154 X  - 1291 X  + 7688 X + 15376]
(C1) (N+1)^B*N!^B;
                                      B   B
(D1)                           (N + 1)  N!
(C2) FACTCOMB(%);
(C1) (X+1)*((U+V)^2+A*(W+Z)^2),EXPAND;
      2      2                            2      2
(D1) A X Z  + A Z  + 2 A W X Z + 2 A W Z + A W  X + V  X
                     2        2    2            2
        + 2 U V X + U  X + A W  + V  + 2 U V + U
(C2) FACTORSUM(%);
                                   2          2
(D2)                 (X + 1) (A (Z + W)  + (V + U) )
(C1) GFACTOR(X**4-1); (D1) (X - 1) (X + 1) (X + %I) (X - %I)
(C1) ((X-2*Y)**4/(X**2-4*Y**2)**2+1)*(Y+A)*(2*Y+X)
        /(4*Y**2+X**2);
                                           4
                                  (X - 2 Y)
              (Y + A) (2 Y + X) (------------ + 1)
                                   2      2 2
                                 (X  - 4 Y )
(D1)          ------------------------------------
                              2    2
                           4 Y  + X
(C2) RAT(%,Y,A,X);
                            2 A + 2 Y
(D2)/R/                     ---------
                             X + 2 Y
(C1) S:A*X+B*X+5$ (C2) RATCOEF(S,A+B); (D2) X
(C1) (4*X**3+10*X-11)/(X**5+5);
                                         3
                                      4 X  + 10 X - 11
(D1)                                  ----------------
                                            5
                                           X  
(C2) MODULUS:3$
(C3) MOD(D1);
                                2
                               X  + X - 1
(D3)                      --------------------
                           4    3    2
                          X  + X  + X  + X + 1
(C4) RATDIFF(D1,X);
                          5    4    3
                         X  - X  - X  + X - 1
(D4)                ------------------------------
                     8    7    5    4    3
                    X  - X  + X  - X  + X  - X + 1
(C1) RATEXPAND((2*X-3*Y)**3);
                3         2       2        3
(D1)      - 27 Y  + 54 X Y  - 36 X  Y + 8 X
(C2) (X-1)/(X+1)**2+1/(X-1);
                              X - 1       1
(D2)                         -------- + -----
                                    2   X - 1
                             (X + 1)
(C3) EXPAND(D2);
                         X              1           1
(D3)                ------------ - ------------ + -----
                     2              2             X - 1
                    X  + 2 X + 1   X  + 2 X + 1
(C4) RATEXPAND(D2);
                             2
                          2 X                 2
(D4)                 --------------- + ---------------
                      3    2            3    2
                     X  + X  - X - 1   X  + X  - X - 1
(C1) SIN(X/(X^2+X))=%E^((LOG(X)+1)**2-LOG(X)**2);
                                           2          2
                    X          (LOG(X) + 1)  - LOG (X)
(D1)          SIN(------) = %E
                   2
                  X  + X
(C2) RATSIMP(%);
                                  1          2
(D2)                        SIN(-----) = %E X
                                X + 1
(C3) ((X-1)**(3/2)-(X+1)*SQRT(X-1))/SQRT((X-1)*(X+1));
                       3/2
                (X - 1)    - SQRT(X - 1) (X + 1)
(D3)            --------------------------------
                    SQRT(X - 1) SQRT(X + 1)
(C4) RATSIMP(%);
                                 2
(D4)                      - -----------
                            SQRT(X + 1)
(C5)  X**(A+1/A),RATSIMPEXPONS:TRUE;
                    2
                   A  + 1
                   ------
                     A
(D5)              X
(C5) RATWEIGHT(A,1,B,1);
(D5)                         [[B, 1], [A, 1]]
(C6) EXP1:RAT(A+B+1)$
(C7) %**2;
                      2                  2
(D7)/R/              B  + (2 A + 2) B + A  + 2 A + 1
(C8) RATWTLVL:1$
(C9) EXP1**2;
(D9)/R/                       2 B + 2 A + 1
Note: The RATFAC and RATWEIGHT schemes are incompatible and may not both be used at the same time.
KILL(...,RATWEIGHTS)
and
SAVE(...,RATWEIGHTS);
both work.
(C1) SQFR(4*X**4+4*X**3-3*X**2-4*X-1);
                             2               2
(D1)                       (X  - 1) (2 X + 1)