Introduction to Trigonometric
Trigonometric
(C1) X+SIN(3*X)/SIN(X),TRIGEXPAND=TRUE,EXPAND; 2 2 (D1) - SIN (X) + 3 COS (X) + X (C2) TRIGEXPAND(SIN(10*X+Y)); (D2) COS(10 X) SIN(Y) + SIN(10 X) COS(Y)
(C4) TRIGREDUCE(-SIN(X)^2+3*COS(X)^2+X); (D4) 2 COS(2 X) + X + 1 The trigonometric simplification routines will use declared information in some simple cases. Declarations about variables are used as follows, e.g. (C5) DECLARE(J, INTEGER, E, EVEN, O, ODD)$ (C6) SIN(X + (E + 1/2)*%PI)$ (D6) COS(X) (C7) SIN(X + (O + 1/2) %PI); (D7) - COS(X)
(c1) trigrat(sin(3*a)/sin(a+%pi/3)); (d1) sqrt(3) sin(2 a) + cos(2 a) - 1
Here is another example (for which the function was intended); see [Davenport, Siret, Tournier, Calcul Formel, Masson (or in english, Addison-Wesley), section 1.5.5, Morley theorem). Timings are on VAX 780.
(c4) c:%pi/3-a-b; %pi (d4) - b - a + --- 3 (c5) bc:sin(a)*sin(3*c)/sin(a+b); sin(a) sin(3 b + 3 a) (d5) --------------------- sin(b + a) (c6) ba:bc,c=a,a=c$ (c7) ac2:ba^2+bc^2-2*bc*ba*cos(b); 2 2 sin (a) sin (3 b + 3 a) (d7) ----------------------- 2 sin (b + a) %pi 2 sin(a) sin(3 a) cos(b) sin(b + a - ---) sin(3 b + 3 a) 3 - -------------------------------------------------------- %pi sin(a - ---) sin(b + a) 3 2 2 %pi sin (3 a) sin (b + a - ---) 3 + --------------------------- 2 %pi sin (a - ---) 3 (c9) trigrat(ac2); Totaltime= 65866 msec. GCtime= 7716 msec. (d9) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a) - 2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a) - 2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a) + 4 sqrt(3) sin(2 b + 2 a) - 8 cos(2 b + 2 a) - 4 cos(2 b - 2 a) + sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b) + sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a) - 9)/4