Actual source code: iterativ.c
1: #define PETSCKSP_DLL
3: /*
4: This file contains some simple default routines.
5: These routines should be SHORT, since they will be included in every
6: executable image that uses the iterative routines (note that, through
7: the registry system, we provide a way to load only the truely necessary
8: files)
9: */
10: #include include/private/kspimpl.h
14: /*
15: KSPDefaultFreeWork - Free work vectors
17: Input Parameters:
18: . ksp - iterative context
19: */
20: PetscErrorCode KSPDefaultFreeWork(KSP ksp)
21: {
25: if (ksp->work) {
26: VecDestroyVecs(ksp->work,ksp->nwork);
27: ksp->work = PETSC_NULL;
28: }
29: return(0);
30: }
34: /*@
35: KSPGetResidualNorm - Gets the last (approximate preconditioned)
36: residual norm that has been computed.
37:
38: Not Collective
40: Input Parameters:
41: . ksp - the iterative context
43: Output Parameters:
44: . rnorm - residual norm
46: Level: intermediate
48: .keywords: KSP, get, residual norm
50: .seealso: KSPBuildResidual()
51: @*/
52: PetscErrorCode KSPGetResidualNorm(KSP ksp,PetscReal *rnorm)
53: {
57: *rnorm = ksp->rnorm;
58: return(0);
59: }
63: /*@
64: KSPGetIterationNumber - Gets the current iteration number; if the
65: KSPSolve() is complete, returns the number of iterations
66: used.
67:
68: Not Collective
70: Input Parameters:
71: . ksp - the iterative context
73: Output Parameters:
74: . its - number of iterations
76: Level: intermediate
78: Notes:
79: During the ith iteration this returns i-1
80: .keywords: KSP, get, residual norm
82: .seealso: KSPBuildResidual(), KSPGetResidualNorm()
83: @*/
84: PetscErrorCode KSPGetIterationNumber(KSP ksp,PetscInt *its)
85: {
89: *its = ksp->its;
90: return(0);
91: }
95: /*@C
96: KSPMonitorSingularValue - Prints the two norm of the true residual and
97: estimation of the extreme singular values of the preconditioned problem
98: at each iteration.
99:
100: Collective on KSP
102: Input Parameters:
103: + ksp - the iterative context
104: . n - the iteration
105: - rnorm - the two norm of the residual
107: Options Database Key:
108: . -ksp_monitor_singular_value - Activates KSPMonitorSingularValue()
110: Notes:
111: The CG solver uses the Lanczos technique for eigenvalue computation,
112: while GMRES uses the Arnoldi technique; other iterative methods do
113: not currently compute singular values.
115: Level: intermediate
117: .keywords: KSP, CG, default, monitor, extreme, singular values, Lanczos, Arnoldi
119: .seealso: KSPComputeExtremeSingularValues()
120: @*/
121: PetscErrorCode KSPMonitorSingularValue(KSP ksp,PetscInt n,PetscReal rnorm,void *dummy)
122: {
123: PetscReal emin,emax,c;
124: PetscErrorCode ierr;
125: PetscViewerASCIIMonitor viewer = (PetscViewerASCIIMonitor) dummy;
129: if (!dummy) {PetscViewerASCIIMonitorCreate(ksp->comm,"stdout",0,&viewer);}
130: if (!ksp->calc_sings) {
131: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm %14.12e \n",n,rnorm);
132: } else {
133: KSPComputeExtremeSingularValues(ksp,&emax,&emin);
134: c = emax/emin;
135: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm %14.12e %% max %G min %G max/min %G\n",n,rnorm,emax,emin,c);
136: }
137: if (!dummy) {PetscViewerASCIIMonitorDestroy(viewer);}
138: return(0);
139: }
143: /*@C
144: KSPMonitorSolution - Monitors progress of the KSP solvers by calling
145: VecView() for the approximate solution at each iteration.
147: Collective on KSP
149: Input Parameters:
150: + ksp - the KSP context
151: . its - iteration number
152: . fgnorm - 2-norm of residual (or gradient)
153: - dummy - either a viewer or PETSC_NULL
155: Level: intermediate
157: Notes:
158: For some Krylov methods such as GMRES constructing the solution at
159: each iteration is expensive, hence using this will slow the code.
161: .keywords: KSP, nonlinear, vector, monitor, view
163: .seealso: KSPMonitorSet(), KSPMonitorDefault(), VecView()
164: @*/
165: PetscErrorCode KSPMonitorSolution(KSP ksp,PetscInt its,PetscReal fgnorm,void *dummy)
166: {
168: Vec x;
169: PetscViewer viewer = (PetscViewer) dummy;
172: KSPBuildSolution(ksp,PETSC_NULL,&x);
173: if (!viewer) {
174: MPI_Comm comm;
175: PetscObjectGetComm((PetscObject)ksp,&comm);
176: viewer = PETSC_VIEWER_DRAW_(comm);
177: }
178: VecView(x,viewer);
180: return(0);
181: }
185: /*@C
186: KSPMonitorDefault - Print the residual norm at each iteration of an
187: iterative solver.
189: Collective on KSP
191: Input Parameters:
192: + ksp - iterative context
193: . n - iteration number
194: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
195: - dummy - unused monitor context
197: Level: intermediate
199: .keywords: KSP, default, monitor, residual
201: .seealso: KSPMonitorSet(), KSPMonitorTrueResidualNorm(), KSPMonitorLGCreate()
202: @*/
203: PetscErrorCode KSPMonitorDefault(KSP ksp,PetscInt n,PetscReal rnorm,void *dummy)
204: {
205: PetscErrorCode ierr;
206: PetscViewerASCIIMonitor viewer = (PetscViewerASCIIMonitor) dummy;
209: if (!dummy) {PetscViewerASCIIMonitorCreate(ksp->comm,"stdout",0,&viewer);}
210: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm %14.12e \n",n,rnorm);
211: if (!dummy) {PetscViewerASCIIMonitorDestroy(viewer);}
212: return(0);
213: }
217: /*@C
218: KSPMonitorTrueResidualNorm - Prints the true residual norm as well as the preconditioned
219: residual norm at each iteration of an iterative solver.
221: Collective on KSP
223: Input Parameters:
224: + ksp - iterative context
225: . n - iteration number
226: . rnorm - 2-norm (preconditioned) residual value (may be estimated).
227: - dummy - unused monitor context
229: Options Database Key:
230: . -ksp_monitor_true_residual_norm - Activates KSPMonitorTrueResidualNorm()
232: Notes:
233: When using right preconditioning, these values are equivalent.
235: When using either ICC or ILU preconditioners in BlockSolve95
236: (via MATMPIROWBS matrix format), then use this monitor will
237: print both the residual norm associated with the original
238: (unscaled) matrix.
240: Level: intermediate
242: .keywords: KSP, default, monitor, residual
244: .seealso: KSPMonitorSet(), KSPMonitorDefault(), KSPMonitorLGCreate()
245: @*/
246: PetscErrorCode KSPMonitorTrueResidualNorm(KSP ksp,PetscInt n,PetscReal rnorm,void *dummy)
247: {
248: PetscErrorCode ierr;
249: Vec resid,work;
250: PetscReal scnorm,bnorm;
251: PC pc;
252: Mat A,B;
253: PetscViewerASCIIMonitor viewer = (PetscViewerASCIIMonitor) dummy;
254:
256: if (!dummy) {PetscViewerASCIIMonitorCreate(ksp->comm,"stdout",0,&viewer);}
257: VecDuplicate(ksp->vec_rhs,&work);
258: KSPBuildResidual(ksp,0,work,&resid);
260: /*
261: Unscale the residual if the matrix is, for example, a BlockSolve matrix
262: but only if both matrices are the same matrix, since only then would
263: they be scaled.
264: */
265: VecCopy(resid,work);
266: KSPGetPC(ksp,&pc);
267: PCGetOperators(pc,&A,&B,PETSC_NULL);
268: if (A == B) {
269: MatUnScaleSystem(A,work,PETSC_NULL);
270: }
271: VecNorm(work,NORM_2,&scnorm);
272: VecDestroy(work);
273: VecNorm(ksp->vec_rhs,NORM_2,&bnorm);
274: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP preconditioned resid norm %14.12e true resid norm %14.12e ||Ae||/||Ax|| %14.12e\n",n,rnorm,scnorm,scnorm/bnorm);
275: if (!dummy) {PetscViewerASCIIMonitorDestroy(viewer);}
276: return(0);
277: }
281: /*
282: Default (short) KSP Monitor, same as KSPMonitorDefault() except
283: it prints fewer digits of the residual as the residual gets smaller.
284: This is because the later digits are meaningless and are often
285: different on different machines; by using this routine different
286: machines will usually generate the same output.
287: */
288: PetscErrorCode KSPMonitorDefaultShort(KSP ksp,PetscInt its,PetscReal fnorm,void *dummy)
289: {
290: PetscErrorCode ierr;
291: PetscViewerASCIIMonitor viewer = (PetscViewerASCIIMonitor) dummy;
294: if (!dummy) {PetscViewerASCIIMonitorCreate(ksp->comm,"stdout",0,&viewer);}
296: if (fnorm > 1.e-9) {
297: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm %G \n",its,fnorm);
298: } else if (fnorm > 1.e-11){
299: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm %5.3e \n",its,fnorm);
300: } else {
301: PetscViewerASCIIMonitorPrintf(viewer,"%3D KSP Residual norm < 1.e-11\n",its);
302: }
303: if (!dummy) {PetscViewerASCIIMonitorDestroy(viewer);}
304: return(0);
305: }
309: /*@C
310: KSPSkipConverged - Convergence test that NEVER returns as converged.
312: Collective on KSP
314: Input Parameters:
315: + ksp - iterative context
316: . n - iteration number
317: . rnorm - 2-norm residual value (may be estimated)
318: - dummy - unused convergence context
320: Returns:
321: . reason - always KSP_CONVERGED_ITERATING
323: Notes:
324: This is used as the convergence test with the option KSPSetNormType(ksp,KSP_NO_NORM),
325: since norms of the residual are not computed. Convergence is then declared
326: after a fixed number of iterations have been used. Useful when one is
327: using CG or Bi-CG-stab as a smoother.
328:
329: Level: advanced
331: .keywords: KSP, default, convergence, residual
333: .seealso: KSPSetConvergenceTest(), KSPSetTolerances(), KSPSetNormType()
334: @*/
335: PetscErrorCode KSPSkipConverged(KSP ksp,PetscInt n,PetscReal rnorm,KSPConvergedReason *reason,void *dummy)
336: {
339: return(0);
340: }
344: /*@C
345: KSPDefaultConvergedSetUIRNorm - makes the default convergence test use || B*(b - A*(initial guess))||
346: instead of || B*b ||. In the case of right preconditioner or if KSPSetNormType(ksp,KSP_UNPRECONDIITONED_NORM)
347: is used there is no B in the above formula. UIRNorm is short for Use Initial Residual Norm.
349: Collective on KSP
351: Input Parameters:
352: . ksp - iterative context
354: Options Database:
355: . -ksp_converged_use_initial_residual_norm
357: Use KSPSetTolerances() to alter the defaults for rtol, abstol, dtol.
359: The precise values of reason are macros such as KSP_CONVERGED_RTOL, which
360: are defined in petscksp.h.
362: Level: intermediate
364: .keywords: KSP, default, convergence, residual
366: .seealso: KSPSetConvergenceTest(), KSPSetTolerances(), KSPSkipConverged(), KSPConvergedReason, KSPGetConvergedReason(), KSPDefaultConvergedSetUMIRNorm()
367: @*/
368: PetscErrorCode KSPDefaultConvergedSetUIRNorm(KSP ksp)
369: {
372: if (ksp->defaultconvergedmininitialrtol) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Can use KSPDefaultConvergedSetUIRNorm() and KSPDefaultConvergedSetUMIRNorm() together");
373: ksp->defaultconvergedinitialrtol = PETSC_TRUE;
374: return(0);
375: }
379: /*@C
380: KSPDefaultConvergedSetUMIRNorm - makes the default convergence test use min(|| B*(b - A*(initial guess))||,|| B*b ||)
381: In the case of right preconditioner or if KSPSetNormType(ksp,KSP_UNPRECONDIITONED_NORM)
382: is used there is no B in the above formula. UMIRNorm is short for Use Minimum Initial Residual Norm.
384: Collective on KSP
386: Input Parameters:
387: . ksp - iterative context
389: Options Database:
390: . -ksp_converged_use_min_initial_residual_norm
392: Use KSPSetTolerances() to alter the defaults for rtol, abstol, dtol.
394: The precise values of reason are macros such as KSP_CONVERGED_RTOL, which
395: are defined in petscksp.h.
397: Level: intermediate
399: .keywords: KSP, default, convergence, residual
401: .seealso: KSPSetConvergenceTest(), KSPSetTolerances(), KSPSkipConverged(), KSPConvergedReason, KSPGetConvergedReason(), KSPDefaultConvergedSetUIRNorm()
402: @*/
403: PetscErrorCode KSPDefaultConvergedSetUMIRNorm(KSP ksp)
404: {
407: if (ksp->defaultconvergedinitialrtol) SETERRQ(PETSC_ERR_ARG_WRONGSTATE,"Cannot use KSPDefaultConvergedSetUIRNorm() and KSPDefaultConvergedSetUMIRNorm() together");
408: ksp->defaultconvergedmininitialrtol = PETSC_TRUE;
409: return(0);
410: }
414: /*@C
415: KSPDefaultConverged - Determines convergence of
416: the iterative solvers (default code).
418: Collective on KSP
420: Input Parameters:
421: + ksp - iterative context
422: . n - iteration number
423: . rnorm - 2-norm residual value (may be estimated)
424: - dummy - unused convergence context
426: Returns:
427: + positive - if the iteration has converged;
428: . negative - if residual norm exceeds divergence threshold;
429: - 0 - otherwise.
431: Notes:
432: KSPDefaultConverged() reaches convergence when
433: $ rnorm < MAX (rtol * rnorm_0, abstol);
434: Divergence is detected if
435: $ rnorm > dtol * rnorm_0,
437: where
438: + rtol = relative tolerance,
439: . abstol = absolute tolerance.
440: . dtol = divergence tolerance,
441: - rnorm_0 is the two norm of the right hand side. When initial guess is non-zero you
442: can call KSPDefaultConvergedSetUIRNorm() to use the norm of (b - A*(initial guess))
443: as the starting point for relative norm convergence testing.
445: Use KSPSetTolerances() to alter the defaults for rtol, abstol, dtol.
447: The precise values of reason are macros such as KSP_CONVERGED_RTOL, which
448: are defined in petscksp.h.
450: Level: intermediate
452: .keywords: KSP, default, convergence, residual
454: .seealso: KSPSetConvergenceTest(), KSPSetTolerances(), KSPSkipConverged(), KSPConvergedReason, KSPGetConvergedReason(),
455: KSPDefaultConvergedSetUIRNorm(), KSPDefaultConvergedSetUMIRNorm().
456: @*/
457: PetscErrorCode KSPDefaultConverged(KSP ksp,PetscInt n,PetscReal rnorm,KSPConvergedReason *reason,void *dummy)
458: {
464: *reason = KSP_CONVERGED_ITERATING;
466: if (!n) {
467: /* if user gives initial guess need to compute norm of b */
468: if (!ksp->guess_zero && !ksp->defaultconvergedinitialrtol) {
469: PetscReal snorm;
470: if (ksp->normtype == KSP_UNPRECONDITIONED_NORM || ksp->pc_side == PC_RIGHT) {
471: PetscInfo(ksp,"user has provided nonzero initial guess, computing 2-norm of RHS\n");
472: VecNorm(ksp->vec_rhs,NORM_2,&snorm); /* <- b'*b */
473: } else {
474: Vec z;
475: VecDuplicate(ksp->vec_rhs,&z);
476: KSP_PCApply(ksp,ksp->vec_rhs,z);
477: if (ksp->normtype == KSP_PRECONDITIONED_NORM) {
478: PetscInfo(ksp,"user has provided nonzero initial guess, computing 2-norm of preconditioned RHS\n");
479: VecNorm(z,NORM_2,&snorm); /* dp <- b'*B'*B*b */
480: } else if (ksp->normtype == KSP_NATURAL_NORM) {
481: PetscScalar norm;
482: PetscInfo(ksp,"user has provided nonzero initial guess, computing natural norm of RHS\n");
483: VecDot(ksp->vec_rhs,z,&norm);
484: snorm = sqrt(PetscAbsScalar(norm)); /* dp <- b'*B*b */
485: }
486: VecDestroy(z);
487: }
488: /* handle special case of zero RHS and nonzero guess */
489: if (!snorm) {
490: PetscInfo(ksp,"Special case, user has provided nonzero initial guess and zero RHS\n");
491: snorm = rnorm;
492: }
493: if (ksp->defaultconvergedmininitialrtol) {
494: ksp->rnorm0 = PetscMin(snorm,rnorm);
495: } else {
496: ksp->rnorm0 = snorm;
497: }
498: } else {
499: ksp->rnorm0 = rnorm;
500: }
501: ksp->ttol = PetscMax(ksp->rtol*ksp->rnorm0,ksp->abstol);
502: }
504: if (rnorm != rnorm) {
505: PetscInfo(ksp,"Linear solver has created a not a number (NaN) as the residual norm, declaring divergence \n");
506: *reason = KSP_DIVERGED_NAN;
507: } else if (rnorm <= ksp->ttol) {
508: if (rnorm < ksp->abstol) {
509: PetscInfo3(ksp,"Linear solver has converged. Residual norm %G is less than absolute tolerance %G at iteration %D\n",rnorm,ksp->abstol,n);
510: *reason = KSP_CONVERGED_ATOL;
511: } else {
512: PetscInfo4(ksp,"Linear solver has converged. Residual norm %G is less than relative tolerance %G times initial right hand side norm %G at iteration %D\n",rnorm,ksp->rtol,ksp->rnorm0,n);
513: *reason = KSP_CONVERGED_RTOL;
514: }
515: } else if (rnorm >= ksp->divtol*ksp->rnorm0) {
516: PetscInfo3(ksp,"Linear solver is diverging. Initial right hand size norm %G, current residual norm %G at iteration %D\n",ksp->rnorm0,rnorm,n);
517: *reason = KSP_DIVERGED_DTOL;
518: }
519: return(0);
520: }
524: /*
525: KSPDefaultBuildSolution - Default code to create/move the solution.
527: Input Parameters:
528: + ksp - iterative context
529: - v - pointer to the user's vector
531: Output Parameter:
532: . V - pointer to a vector containing the solution
534: Level: advanced
536: .keywords: KSP, build, solution, default
538: .seealso: KSPGetSolution(), KSPDefaultBuildResidual()
539: */
540: PetscErrorCode KSPDefaultBuildSolution(KSP ksp,Vec v,Vec *V)
541: {
544: if (ksp->pc_side == PC_RIGHT) {
545: if (ksp->pc) {
546: if (v) {KSP_PCApply(ksp,ksp->vec_sol,v); *V = v;}
547: else {SETERRQ(PETSC_ERR_SUP,"Not working with right preconditioner");}
548: } else {
549: if (v) {VecCopy(ksp->vec_sol,v); *V = v;}
550: else { *V = ksp->vec_sol;}
551: }
552: } else if (ksp->pc_side == PC_SYMMETRIC) {
553: if (ksp->pc) {
554: if (ksp->transpose_solve) SETERRQ(PETSC_ERR_SUP,"Not working with symmetric preconditioner and transpose solve");
555: if (v) {PCApplySymmetricRight(ksp->pc,ksp->vec_sol,v); *V = v;}
556: else {SETERRQ(PETSC_ERR_SUP,"Not working with symmetric preconditioner");}
557: } else {
558: if (v) {VecCopy(ksp->vec_sol,v); *V = v;}
559: else { *V = ksp->vec_sol;}
560: }
561: } else {
562: if (v) {VecCopy(ksp->vec_sol,v); *V = v;}
563: else { *V = ksp->vec_sol; }
564: }
565: return(0);
566: }
570: /*
571: KSPDefaultBuildResidual - Default code to compute the residual.
573: Input Parameters:
574: . ksp - iterative context
575: . t - pointer to temporary vector
576: . v - pointer to user vector
578: Output Parameter:
579: . V - pointer to a vector containing the residual
581: Level: advanced
583: .keywords: KSP, build, residual, default
585: .seealso: KSPDefaultBuildSolution()
586: */
587: PetscErrorCode KSPDefaultBuildResidual(KSP ksp,Vec t,Vec v,Vec *V)
588: {
590: MatStructure pflag;
591: Mat Amat,Pmat;
594: PCGetOperators(ksp->pc,&Amat,&Pmat,&pflag);
595: KSPBuildSolution(ksp,t,PETSC_NULL);
596: KSP_MatMult(ksp,Amat,t,v);
597: VecAYPX(v,-1.0,ksp->vec_rhs);
598: *V = v;
599: return(0);
600: }
604: /*@C
605: KSPGetVecs - Gets a number of work vectors.
607: Input Parameters:
608: + ksp - iterative context
609: . rightn - number of right work vectors
610: - leftn - number of left work vectors to allocate
612: Output Parameter:
613: + right - the array of vectors created
614: - left - the array of left vectors
616: Note: The right vector has as many elements as the matrix has columns. The left
617: vector has as many elements as the matrix has rows.
619: Level: advanced
621: .seealso: MatGetVecs()
623: @*/
624: PetscErrorCode KSPGetVecs(KSP ksp,PetscInt rightn, Vec **right,PetscInt leftn,Vec **left)
625: {
627: Vec vecr,vecl;
630: if (rightn) {
631: if (!right) SETERRQ(PETSC_ERR_ARG_INCOMP,"You asked for right vectors but did not pass a pointer to hold them");
632: if (ksp->vec_sol) vecr = ksp->vec_sol;
633: else {
634: Mat pmat;
635: PCGetOperators(ksp->pc,PETSC_NULL,&pmat,PETSC_NULL);
636: MatGetVecs(pmat,&vecr,PETSC_NULL);
637: }
638: VecDuplicateVecs(vecr,rightn,right);
639: if (!ksp->vec_sol) {
640: VecDestroy(vecr);
641: }
642: }
643: if (leftn) {
644: if (!left) SETERRQ(PETSC_ERR_ARG_INCOMP,"You asked for left vectors but did not pass a pointer to hold them");
645: if (ksp->vec_rhs) vecl = ksp->vec_rhs;
646: else {
647: Mat pmat;
648: PCGetOperators(ksp->pc,PETSC_NULL,&pmat,PETSC_NULL);
649: MatGetVecs(pmat,PETSC_NULL,&vecl);
650: }
651: VecDuplicateVecs(vecl,leftn,left);
652: if (!ksp->vec_rhs) {
653: VecDestroy(vecl);
654: }
655: }
656: return(0);
657: }
661: /*
662: KSPDefaultGetWork - Gets a number of work vectors.
664: Input Parameters:
665: . ksp - iterative context
666: . nw - number of work vectors to allocate
668: Notes:
669: Call this only if no work vectors have been allocated
670: */
671: PetscErrorCode KSPDefaultGetWork(KSP ksp,PetscInt nw)
672: {
676: if (ksp->work) {KSPDefaultFreeWork(ksp);}
677: ksp->nwork = nw;
678: KSPGetVecs(ksp,nw,&ksp->work,0,PETSC_NULL);
679: PetscLogObjectParents(ksp,nw,ksp->work);
680: return(0);
681: }
685: /*
686: KSPDefaultDestroy - Destroys a iterative context variable for methods with
687: no separate context. Preferred calling sequence KSPDestroy().
689: Input Parameter:
690: . ksp - the iterative context
691: */
692: PetscErrorCode KSPDefaultDestroy(KSP ksp)
693: {
698: PetscFree(ksp->data);
700: /* free work vectors */
701: KSPDefaultFreeWork(ksp);
702: return(0);
703: }
707: /*@
708: KSPGetConvergedReason - Gets the reason the KSP iteration was stopped.
710: Not Collective
712: Input Parameter:
713: . ksp - the KSP context
715: Output Parameter:
716: . reason - negative value indicates diverged, positive value converged, see KSPConvergedReason
718: Possible values for reason:
719: + KSP_CONVERGED_RTOL (residual 2-norm decreased by a factor of rtol, from 2-norm of right hand side)
720: . KSP_CONVERGED_ATOL (residual 2-norm less than abstol)
721: . KSP_CONVERGED_ITS (used by the preonly preconditioner that always uses ONE iteration)
722: . KSP_CONVERGED_QCG_NEG_CURVE
723: . KSP_CONVERGED_QCG_CONSTRAINED
724: . KSP_CONVERGED_STEP_LENGTH
725: . KSP_DIVERGED_ITS (required more than its to reach convergence)
726: . KSP_DIVERGED_DTOL (residual norm increased by a factor of divtol)
727: . KSP_DIVERGED_NAN (residual norm became Not-a-number likely do to 0/0)
728: . KSP_DIVERGED_BREAKDOWN (generic breakdown in method)
729: - KSP_DIVERGED_BREAKDOWN_BICG (Initial residual is orthogonal to preconditioned initial
730: residual. Try a different preconditioner, or a different initial guess.)
731:
733: Level: beginner
735: Notes: Can only be called after the call the KSPSolve() is complete.
737: .keywords: KSP, nonlinear, set, convergence, test
739: .seealso: KSPSetConvergenceTest(), KSPDefaultConverged(), KSPSetTolerances(), KSPConvergedReason
740: @*/
741: PetscErrorCode KSPGetConvergedReason(KSP ksp,KSPConvergedReason *reason)
742: {
746: *reason = ksp->reason;
747: return(0);
748: }