#define PETSCKSP_DLL /* Provides an interface to the ML 4.0 smoothed Aggregation */ #include "private/pcimpl.h" /*I "petscpc.h" I*/ #include "src/ksp/pc/impls/mg/mgimpl.h" /*I "petscmg.h" I*/ #include "src/mat/impls/aij/seq/aij.h" #include "src/mat/impls/aij/mpi/mpiaij.h" EXTERN_C_BEGIN #include #include "ml_include.h" EXTERN_C_END /* The context (data structure) at each grid level */ typedef struct { Vec x,b,r; /* global vectors */ Mat A,P,R; KSP ksp; } GridCtx; /* The context used to input PETSc matrix into ML at fine grid */ typedef struct { Mat A,Aloc; Vec x,y; ML_Operator *mlmat; PetscScalar *pwork; /* tmp array used by PetscML_comm() */ } FineGridCtx; /* The context associates a ML matrix with a PETSc shell matrix */ typedef struct { Mat A; /* PETSc shell matrix associated with mlmat */ ML_Operator *mlmat; /* ML matrix assorciated with A */ Vec y; } Mat_MLShell; /* Private context for the ML preconditioner */ typedef struct { ML *ml_object; ML_Aggregate *agg_object; GridCtx *gridctx; FineGridCtx *PetscMLdata; PetscInt fine_level,MaxNlevels,MaxCoarseSize,CoarsenScheme; PetscReal Threshold,DampingFactor; PetscTruth SpectralNormScheme_Anorm; PetscMPIInt size; PetscErrorCode (*PCSetUp)(PC); PetscErrorCode (*PCDestroy)(PC); } PC_ML; extern int PetscML_getrow(ML_Operator *ML_data,int N_requested_rows,int requested_rows[], int allocated_space,int columns[],double values[],int row_lengths[]); extern int PetscML_matvec(ML_Operator *ML_data, int in_length, double p[], int out_length,double ap[]); extern int PetscML_comm(double x[], void *ML_data); extern PetscErrorCode MatMult_ML(Mat,Vec,Vec); extern PetscErrorCode MatMultAdd_ML(Mat,Vec,Vec,Vec); extern PetscErrorCode MatConvert_MPIAIJ_ML(Mat,MatType,MatReuse,Mat*); extern PetscErrorCode MatDestroy_ML(Mat); extern PetscErrorCode MatWrapML_SeqAIJ(ML_Operator*,Mat*); extern PetscErrorCode MatWrapML_MPIAIJ(ML_Operator*,Mat*); extern PetscErrorCode MatWrapML_SHELL(ML_Operator*,Mat*); /* -------------------------------------------------------------------------- */ /* PCSetUp_ML - Prepares for the use of the ML preconditioner by setting data structures and options. Input Parameter: . pc - the preconditioner context Application Interface Routine: PCSetUp() Notes: The interface routine PCSetUp() is not usually called directly by the user, but instead is called by PCApply() if necessary. */ extern PetscErrorCode PCSetFromOptions_MG(PC); #undef __FUNCT__ #define __FUNCT__ "PCSetUp_ML" PetscErrorCode PCSetUp_ML(PC pc) { PetscErrorCode ierr; PetscMPIInt size; FineGridCtx *PetscMLdata; ML *ml_object; ML_Aggregate *agg_object; ML_Operator *mlmat; PetscInt nlocal_allcols,Nlevels,mllevel,level,level1,m,fine_level; Mat A,Aloc; GridCtx *gridctx; PC_ML *pc_ml=PETSC_NULL; PetscContainer container; PetscFunctionBegin; ierr = PetscObjectQuery((PetscObject)pc,"PC_ML",(PetscObject *)&container);CHKERRQ(ierr); if (container) { ierr = PetscContainerGetPointer(container,(void **)&pc_ml);CHKERRQ(ierr); } else { SETERRQ(PETSC_ERR_ARG_NULL,"Container does not exit"); } /* setup special features of PCML */ /*--------------------------------*/ /* covert A to Aloc to be used by ML at fine grid */ A = pc->pmat; ierr = MPI_Comm_size(A->comm,&size);CHKERRQ(ierr); pc_ml->size = size; if (size > 1){ ierr = MatConvert_MPIAIJ_ML(A,PETSC_NULL,MAT_INITIAL_MATRIX,&Aloc);CHKERRQ(ierr); } else { Aloc = A; } /* create and initialize struct 'PetscMLdata' */ ierr = PetscNew(FineGridCtx,&PetscMLdata);CHKERRQ(ierr); PetscMLdata->A = A; PetscMLdata->Aloc = Aloc; ierr = PetscMalloc((Aloc->cmap.n+1)*sizeof(PetscScalar),&PetscMLdata->pwork);CHKERRQ(ierr); pc_ml->PetscMLdata = PetscMLdata; ierr = VecCreate(PETSC_COMM_SELF,&PetscMLdata->x);CHKERRQ(ierr); if (size == 1){ ierr = VecSetSizes(PetscMLdata->x,A->cmap.n,A->cmap.n);CHKERRQ(ierr); } else { ierr = VecSetSizes(PetscMLdata->x,Aloc->cmap.n,Aloc->cmap.n);CHKERRQ(ierr); } ierr = VecSetType(PetscMLdata->x,VECSEQ);CHKERRQ(ierr); ierr = VecCreate(PETSC_COMM_SELF,&PetscMLdata->y);CHKERRQ(ierr); ierr = VecSetSizes(PetscMLdata->y,A->rmap.n,PETSC_DECIDE);CHKERRQ(ierr); ierr = VecSetType(PetscMLdata->y,VECSEQ);CHKERRQ(ierr); /* create ML discretization matrix at fine grid */ ierr = MatGetSize(Aloc,&m,&nlocal_allcols);CHKERRQ(ierr); ML_Create(&ml_object,pc_ml->MaxNlevels); ML_Init_Amatrix(ml_object,0,m,m,PetscMLdata); ML_Set_Amatrix_Getrow(ml_object,0,PetscML_getrow,PetscML_comm,nlocal_allcols); ML_Set_Amatrix_Matvec(ml_object,0,PetscML_matvec); /* aggregation */ ML_Aggregate_Create(&agg_object); ML_Aggregate_Set_MaxCoarseSize(agg_object,pc_ml->MaxCoarseSize); /* set options */ switch (pc_ml->CoarsenScheme) { case 1: ML_Aggregate_Set_CoarsenScheme_Coupled(agg_object);break; case 2: ML_Aggregate_Set_CoarsenScheme_MIS(agg_object);break; case 3: ML_Aggregate_Set_CoarsenScheme_METIS(agg_object);break; } ML_Aggregate_Set_Threshold(agg_object,pc_ml->Threshold); ML_Aggregate_Set_DampingFactor(agg_object,pc_ml->DampingFactor); if (pc_ml->SpectralNormScheme_Anorm){ ML_Aggregate_Set_SpectralNormScheme_Anorm(agg_object); } Nlevels = ML_Gen_MGHierarchy_UsingAggregation(ml_object,0,ML_INCREASING,agg_object); if (Nlevels<=0) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Nlevels %d must > 0",Nlevels); ierr = PCMGSetLevels(pc,Nlevels,PETSC_NULL);CHKERRQ(ierr); ierr = PCSetFromOptions_MG(pc);CHKERRQ(ierr); /* should be called in PCSetFromOptions_ML(), but cannot be called prior to PCMGSetLevels() */ pc_ml->ml_object = ml_object; pc_ml->agg_object = agg_object; ierr = PetscMalloc(Nlevels*sizeof(GridCtx),&gridctx);CHKERRQ(ierr); fine_level = Nlevels - 1; pc_ml->gridctx = gridctx; pc_ml->fine_level = fine_level; /* wrap ML matrices by PETSc shell matrices at coarsened grids. Level 0 is the finest grid for ML, but coarsest for PETSc! */ gridctx[fine_level].A = A; level = fine_level - 1; if (size == 1){ /* convert ML P, R and A into seqaij format */ for (mllevel=1; mllevelPmat[mllevel]); ierr = MatWrapML_SeqAIJ(mlmat,&gridctx[level].P);CHKERRQ(ierr); mlmat = &(ml_object->Amat[mllevel]); ierr = MatWrapML_SeqAIJ(mlmat,&gridctx[level].A);CHKERRQ(ierr); mlmat = &(ml_object->Rmat[mllevel-1]); ierr = MatWrapML_SeqAIJ(mlmat,&gridctx[level].R);CHKERRQ(ierr); level--; } } else { /* convert ML P and R into shell format, ML A into mpiaij format */ for (mllevel=1; mllevelPmat[mllevel]); ierr = MatWrapML_SHELL(mlmat,&gridctx[level].P);CHKERRQ(ierr); mlmat = &(ml_object->Rmat[mllevel-1]); ierr = MatWrapML_SHELL(mlmat,&gridctx[level].R);CHKERRQ(ierr); mlmat = &(ml_object->Amat[mllevel]); ierr = MatWrapML_MPIAIJ(mlmat,&gridctx[level].A);CHKERRQ(ierr); level--; } } /* create coarse level and the interpolation between the levels */ for (level=0; levelcomm,&gridctx[level].x);CHKERRQ(ierr); ierr = VecSetSizes(gridctx[level].x,gridctx[level].A->cmap.n,PETSC_DECIDE);CHKERRQ(ierr); ierr = VecSetType(gridctx[level].x,VECMPI);CHKERRQ(ierr); ierr = PCMGSetX(pc,level,gridctx[level].x);CHKERRQ(ierr); ierr = VecCreate(gridctx[level].A->comm,&gridctx[level].b);CHKERRQ(ierr); ierr = VecSetSizes(gridctx[level].b,gridctx[level].A->rmap.n,PETSC_DECIDE);CHKERRQ(ierr); ierr = VecSetType(gridctx[level].b,VECMPI);CHKERRQ(ierr); ierr = PCMGSetRhs(pc,level,gridctx[level].b);CHKERRQ(ierr); level1 = level + 1; ierr = VecCreate(gridctx[level1].A->comm,&gridctx[level1].r);CHKERRQ(ierr); ierr = VecSetSizes(gridctx[level1].r,gridctx[level1].A->rmap.n,PETSC_DECIDE);CHKERRQ(ierr); ierr = VecSetType(gridctx[level1].r,VECMPI);CHKERRQ(ierr); ierr = PCMGSetR(pc,level1,gridctx[level1].r);CHKERRQ(ierr); ierr = PCMGSetInterpolate(pc,level1,gridctx[level].P);CHKERRQ(ierr); ierr = PCMGSetRestriction(pc,level1,gridctx[level].R);CHKERRQ(ierr); if (level == 0){ ierr = PCMGGetCoarseSolve(pc,&gridctx[level].ksp);CHKERRQ(ierr); } else { ierr = PCMGGetSmoother(pc,level,&gridctx[level].ksp);CHKERRQ(ierr); ierr = PCMGSetResidual(pc,level,PCMGDefaultResidual,gridctx[level].A);CHKERRQ(ierr); } ierr = KSPSetOperators(gridctx[level].ksp,gridctx[level].A,gridctx[level].A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr); } ierr = PCMGGetSmoother(pc,fine_level,&gridctx[fine_level].ksp);CHKERRQ(ierr); ierr = PCMGSetResidual(pc,fine_level,PCMGDefaultResidual,gridctx[fine_level].A);CHKERRQ(ierr); ierr = KSPSetOperators(gridctx[fine_level].ksp,gridctx[level].A,gridctx[fine_level].A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr); /* now call PCSetUp_MG() */ /*--------------------------------*/ ierr = (*pc_ml->PCSetUp)(pc);CHKERRQ(ierr); PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "PetscContainerDestroy_PC_ML" PetscErrorCode PetscContainerDestroy_PC_ML(void *ptr) { PetscErrorCode ierr; PC_ML *pc_ml = (PC_ML*)ptr; PetscInt level; PetscFunctionBegin; if (pc_ml->size > 1){ierr = MatDestroy(pc_ml->PetscMLdata->Aloc);CHKERRQ(ierr);} ML_Aggregate_Destroy(&pc_ml->agg_object); ML_Destroy(&pc_ml->ml_object); ierr = PetscFree(pc_ml->PetscMLdata->pwork);CHKERRQ(ierr); if (pc_ml->PetscMLdata->x){ierr = VecDestroy(pc_ml->PetscMLdata->x);CHKERRQ(ierr);} if (pc_ml->PetscMLdata->y){ierr = VecDestroy(pc_ml->PetscMLdata->y);CHKERRQ(ierr);} ierr = PetscFree(pc_ml->PetscMLdata);CHKERRQ(ierr); for (level=0; levelfine_level; level++){ if (pc_ml->gridctx[level].A){ierr = MatDestroy(pc_ml->gridctx[level].A);CHKERRQ(ierr);} if (pc_ml->gridctx[level].P){ierr = MatDestroy(pc_ml->gridctx[level].P);CHKERRQ(ierr);} if (pc_ml->gridctx[level].R){ierr = MatDestroy(pc_ml->gridctx[level].R);CHKERRQ(ierr);} if (pc_ml->gridctx[level].x){ierr = VecDestroy(pc_ml->gridctx[level].x);CHKERRQ(ierr);} if (pc_ml->gridctx[level].b){ierr = VecDestroy(pc_ml->gridctx[level].b);CHKERRQ(ierr);} if (pc_ml->gridctx[level+1].r){ierr = VecDestroy(pc_ml->gridctx[level+1].r);CHKERRQ(ierr);} } ierr = PetscFree(pc_ml->gridctx);CHKERRQ(ierr); ierr = PetscFree(pc_ml);CHKERRQ(ierr); PetscFunctionReturn(0); } /* -------------------------------------------------------------------------- */ /* PCDestroy_ML - Destroys the private context for the ML preconditioner that was created with PCCreate_ML(). Input Parameter: . pc - the preconditioner context Application Interface Routine: PCDestroy() */ #undef __FUNCT__ #define __FUNCT__ "PCDestroy_ML" PetscErrorCode PCDestroy_ML(PC pc) { PetscErrorCode ierr; PC_ML *pc_ml=PETSC_NULL; PetscContainer container; PetscFunctionBegin; ierr = PetscObjectQuery((PetscObject)pc,"PC_ML",(PetscObject *)&container);CHKERRQ(ierr); if (container) { ierr = PetscContainerGetPointer(container,(void **)&pc_ml);CHKERRQ(ierr); pc->ops->destroy = pc_ml->PCDestroy; } else { SETERRQ(PETSC_ERR_ARG_NULL,"Container does not exit"); } /* detach pc and PC_ML and dereference container */ ierr = PetscObjectCompose((PetscObject)pc,"PC_ML",0);CHKERRQ(ierr); ierr = (*pc->ops->destroy)(pc);CHKERRQ(ierr); ierr = PetscContainerDestroy(container);CHKERRQ(ierr); PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "PCSetFromOptions_ML" PetscErrorCode PCSetFromOptions_ML(PC pc) { PetscErrorCode ierr; PetscInt indx,m,PrintLevel,MaxNlevels,MaxCoarseSize; PetscReal Threshold,DampingFactor; PetscTruth flg; const char *scheme[] = {"Uncoupled","Coupled","MIS","METIS"}; PC_ML *pc_ml=PETSC_NULL; PetscContainer container; PCMGType mgtype; PetscFunctionBegin; ierr = PetscObjectQuery((PetscObject)pc,"PC_ML",(PetscObject *)&container);CHKERRQ(ierr); if (container) { ierr = PetscContainerGetPointer(container,(void **)&pc_ml);CHKERRQ(ierr); } else { SETERRQ(PETSC_ERR_ARG_NULL,"Container does not exit"); } /* inherited MG options */ ierr = PetscOptionsHead("Multigrid options(inherited)");CHKERRQ(ierr); ierr = PetscOptionsInt("-pc_mg_cycles","1 for V cycle, 2 for W-cycle","MGSetCycles",1,&m,&flg);CHKERRQ(ierr); ierr = PetscOptionsInt("-pc_mg_smoothup","Number of post-smoothing steps","MGSetNumberSmoothUp",1,&m,&flg);CHKERRQ(ierr); ierr = PetscOptionsInt("-pc_mg_smoothdown","Number of pre-smoothing steps","MGSetNumberSmoothDown",1,&m,&flg);CHKERRQ(ierr); ierr = PetscOptionsEnum("-pc_mg_type","Multigrid type","PCMGSetType",PCMGTypes,(PetscEnum)PC_MG_MULTIPLICATIVE,(PetscEnum*)&mgtype,&flg);CHKERRQ(ierr); ierr = PetscOptionsTail();CHKERRQ(ierr); /* ML options */ ierr = PetscOptionsHead("ML options");CHKERRQ(ierr); /* set defaults */ PrintLevel = 0; MaxNlevels = 10; MaxCoarseSize = 1; indx = 0; Threshold = 0.0; DampingFactor = 4.0/3.0; ierr = PetscOptionsInt("-pc_ml_PrintLevel","Print level","ML_Set_PrintLevel",PrintLevel,&PrintLevel,PETSC_NULL);CHKERRQ(ierr); ML_Set_PrintLevel(PrintLevel); ierr = PetscOptionsInt("-pc_ml_maxNlevels","Maximum number of levels","None",MaxNlevels,&MaxNlevels,PETSC_NULL);CHKERRQ(ierr); pc_ml->MaxNlevels = MaxNlevels; ierr = PetscOptionsInt("-pc_ml_maxCoarseSize","Maximum coarsest mesh size","ML_Aggregate_Set_MaxCoarseSize",MaxCoarseSize,&MaxCoarseSize,PETSC_NULL);CHKERRQ(ierr); pc_ml->MaxCoarseSize = MaxCoarseSize; ierr = PetscOptionsEList("-pc_ml_CoarsenScheme","Aggregate Coarsen Scheme","ML_Aggregate_Set_CoarsenScheme_*",scheme,4,scheme[0],&indx,PETSC_NULL);CHKERRQ(ierr); pc_ml->CoarsenScheme = indx; ierr = PetscOptionsReal("-pc_ml_DampingFactor","P damping factor","ML_Aggregate_Set_DampingFactor",DampingFactor,&DampingFactor,PETSC_NULL);CHKERRQ(ierr); pc_ml->DampingFactor = DampingFactor; ierr = PetscOptionsReal("-pc_ml_Threshold","Smoother drop tol","ML_Aggregate_Set_Threshold",Threshold,&Threshold,PETSC_NULL);CHKERRQ(ierr); pc_ml->Threshold = Threshold; ierr = PetscOptionsTruth("-pc_ml_SpectralNormScheme_Anorm","Method used for estimating spectral radius","ML_Aggregate_Set_SpectralNormScheme_Anorm",PETSC_FALSE,&pc_ml->SpectralNormScheme_Anorm,PETSC_NULL); ierr = PetscOptionsTail();CHKERRQ(ierr); PetscFunctionReturn(0); } /* -------------------------------------------------------------------------- */ /* PCCreate_ML - Creates a ML preconditioner context, PC_ML, and sets this as the private data within the generic preconditioning context, PC, that was created within PCCreate(). Input Parameter: . pc - the preconditioner context Application Interface Routine: PCCreate() */ /*MC PCML - Use algebraic multigrid preconditioning. This preconditioner requires you provide fine grid discretization matrix. The coarser grid matrices and restriction/interpolation operators are computed by ML, with the matrices coverted to PETSc matrices in aij format and the restriction/interpolation operators wrapped as PETSc shell matrices. Options Database Key: Multigrid options(inherited) + -pc_mg_cycles <1>: 1 for V cycle, 2 for W-cycle (MGSetCycles) . -pc_mg_smoothup <1>: Number of post-smoothing steps (MGSetNumberSmoothUp) . -pc_mg_smoothdown <1>: Number of pre-smoothing steps (MGSetNumberSmoothDown) - -pc_mg_type (one of) additive multiplicative full cascade kascade ML options: + -pc_ml_PrintLevel <0>: Print level (ML_Set_PrintLevel) . -pc_ml_maxNlevels <10>: Maximum number of levels (None) . -pc_ml_maxCoarseSize <1>: Maximum coarsest mesh size (ML_Aggregate_Set_MaxCoarseSize) . -pc_ml_CoarsenScheme (one of) Uncoupled Coupled MIS METIS . -pc_ml_DampingFactor <1.33333>: P damping factor (ML_Aggregate_Set_DampingFactor) . -pc_ml_Threshold <0>: Smoother drop tol (ML_Aggregate_Set_Threshold) - -pc_ml_SpectralNormScheme_Anorm: Method used for estimating spectral radius (ML_Aggregate_Set_SpectralNormScheme_Anorm) Level: intermediate Concepts: multigrid .seealso: PCCreate(), PCSetType(), PCType (for list of available types), PC, PCMGType, PCMGSetLevels(), PCMGGetLevels(), PCMGSetType(), MPSetCycles(), PCMGSetNumberSmoothDown(), PCMGSetNumberSmoothUp(), PCMGGetCoarseSolve(), PCMGSetResidual(), PCMGSetInterpolation(), PCMGSetRestriction(), PCMGGetSmoother(), PCMGGetSmootherUp(), PCMGGetSmootherDown(), PCMGSetCyclesOnLevel(), PCMGSetRhs(), PCMGSetX(), PCMGSetR() M*/ EXTERN_C_BEGIN #undef __FUNCT__ #define __FUNCT__ "PCCreate_ML" PetscErrorCode PETSCKSP_DLLEXPORT PCCreate_ML(PC pc) { PetscErrorCode ierr; PC_ML *pc_ml; PetscContainer container; PetscFunctionBegin; /* initialize pc as PCMG */ ierr = PCSetType(pc,PCMG);CHKERRQ(ierr); /* calls PCCreate_MG() and MGCreate_Private() */ /* create a supporting struct and attach it to pc */ ierr = PetscNew(PC_ML,&pc_ml);CHKERRQ(ierr); ierr = PetscContainerCreate(PETSC_COMM_SELF,&container);CHKERRQ(ierr); ierr = PetscContainerSetPointer(container,pc_ml);CHKERRQ(ierr); ierr = PetscContainerSetUserDestroy(container,PetscContainerDestroy_PC_ML);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject)pc,"PC_ML",(PetscObject)container);CHKERRQ(ierr); pc_ml->PCSetUp = pc->ops->setup; pc_ml->PCDestroy = pc->ops->destroy; /* overwrite the pointers of PCMG by the functions of PCML */ pc->ops->setfromoptions = PCSetFromOptions_ML; pc->ops->setup = PCSetUp_ML; pc->ops->destroy = PCDestroy_ML; PetscFunctionReturn(0); } EXTERN_C_END int PetscML_getrow(ML_Operator *ML_data, int N_requested_rows, int requested_rows[], int allocated_space, int columns[], double values[], int row_lengths[]) { PetscErrorCode ierr; Mat Aloc; Mat_SeqAIJ *a; PetscInt m,i,j,k=0,row,*aj; PetscScalar *aa; FineGridCtx *ml=(FineGridCtx*)ML_Get_MyGetrowData(ML_data); Aloc = ml->Aloc; a = (Mat_SeqAIJ*)Aloc->data; ierr = MatGetSize(Aloc,&m,PETSC_NULL);CHKERRQ(ierr); for (i = 0; iilen[row]; if (allocated_space < k+row_lengths[i]) return(0); if ( (row >= 0) || (row <= (m-1)) ) { aj = a->j + a->i[row]; aa = a->a + a->i[row]; for (j=0; jA, Aloc=ml->Aloc; PetscMPIInt size; PetscScalar *pwork=ml->pwork; PetscInt i; ierr = MPI_Comm_size(A->comm,&size);CHKERRQ(ierr); if (size == 1){ ierr = VecPlaceArray(ml->x,p);CHKERRQ(ierr); } else { for (i=0; ix,pwork);CHKERRQ(ierr); } ierr = VecPlaceArray(ml->y,ap);CHKERRQ(ierr); ierr = MatMult(Aloc,ml->x,ml->y);CHKERRQ(ierr); ierr = VecResetArray(ml->x);CHKERRQ(ierr); ierr = VecResetArray(ml->y);CHKERRQ(ierr); return 0; } int PetscML_comm(double p[],void *ML_data) { PetscErrorCode ierr; FineGridCtx *ml=(FineGridCtx*)ML_data; Mat A=ml->A; Mat_MPIAIJ *a = (Mat_MPIAIJ*)A->data; PetscMPIInt size; PetscInt i,in_length=A->rmap.n,out_length=ml->Aloc->cmap.n; PetscScalar *array; ierr = MPI_Comm_size(A->comm,&size);CHKERRQ(ierr); if (size == 1) return 0; ierr = VecPlaceArray(ml->y,p);CHKERRQ(ierr); ierr = VecScatterBegin(ml->y,a->lvec,INSERT_VALUES,SCATTER_FORWARD,a->Mvctx);CHKERRQ(ierr); ierr = VecScatterEnd(ml->y,a->lvec,INSERT_VALUES,SCATTER_FORWARD,a->Mvctx);CHKERRQ(ierr); ierr = VecResetArray(ml->y);CHKERRQ(ierr); ierr = VecGetArray(a->lvec,&array);CHKERRQ(ierr); for (i=in_length; ilvec,&array);CHKERRQ(ierr); return 0; } #undef __FUNCT__ #define __FUNCT__ "MatMult_ML" PetscErrorCode MatMult_ML(Mat A,Vec x,Vec y) { PetscErrorCode ierr; Mat_MLShell *shell; PetscScalar *xarray,*yarray; PetscInt x_length,y_length; PetscFunctionBegin; ierr = MatShellGetContext(A,(void **)&shell);CHKERRQ(ierr); ierr = VecGetArray(x,&xarray);CHKERRQ(ierr); ierr = VecGetArray(y,&yarray);CHKERRQ(ierr); x_length = shell->mlmat->invec_leng; y_length = shell->mlmat->outvec_leng; ML_Operator_Apply(shell->mlmat,x_length,xarray,y_length,yarray); ierr = VecRestoreArray(x,&xarray);CHKERRQ(ierr); ierr = VecRestoreArray(y,&yarray);CHKERRQ(ierr); PetscFunctionReturn(0); } /* MatMultAdd_ML - Compute y = w + A*x */ #undef __FUNCT__ #define __FUNCT__ "MatMultAdd_ML" PetscErrorCode MatMultAdd_ML(Mat A,Vec x,Vec w,Vec y) { PetscErrorCode ierr; Mat_MLShell *shell; PetscScalar *xarray,*yarray; PetscInt x_length,y_length; PetscFunctionBegin; ierr = MatShellGetContext(A,(void **)&shell);CHKERRQ(ierr); ierr = VecGetArray(x,&xarray);CHKERRQ(ierr); ierr = VecGetArray(y,&yarray);CHKERRQ(ierr); x_length = shell->mlmat->invec_leng; y_length = shell->mlmat->outvec_leng; ML_Operator_Apply(shell->mlmat,x_length,xarray,y_length,yarray); ierr = VecRestoreArray(x,&xarray);CHKERRQ(ierr); ierr = VecRestoreArray(y,&yarray);CHKERRQ(ierr); ierr = VecAXPY(y,1.0,w);CHKERRQ(ierr); PetscFunctionReturn(0); } /* newtype is ignored because "ml" is not listed under Petsc MatType yet */ #undef __FUNCT__ #define __FUNCT__ "MatConvert_MPIAIJ_ML" PetscErrorCode MatConvert_MPIAIJ_ML(Mat A,MatType newtype,MatReuse scall,Mat *Aloc) { PetscErrorCode ierr; Mat_MPIAIJ *mpimat=(Mat_MPIAIJ*)A->data; Mat_SeqAIJ *mat,*a=(Mat_SeqAIJ*)(mpimat->A)->data,*b=(Mat_SeqAIJ*)(mpimat->B)->data; PetscInt *ai=a->i,*aj=a->j,*bi=b->i,*bj=b->j; PetscScalar *aa=a->a,*ba=b->a,*ca; PetscInt am=A->rmap.n,an=A->cmap.n,i,j,k; PetscInt *ci,*cj,ncols; PetscFunctionBegin; if (am != an) SETERRQ2(PETSC_ERR_ARG_WRONG,"A must have a square diagonal portion, am: %d != an: %d",am,an); if (scall == MAT_INITIAL_MATRIX){ ierr = PetscMalloc((1+am)*sizeof(PetscInt),&ci);CHKERRQ(ierr); ci[0] = 0; for (i=0; iA->cmap.n+mpimat->B->cmap.n; ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,am,an,ci,cj,ca,Aloc);CHKERRQ(ierr); /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */ /* Since these are PETSc arrays, change flags to free them as necessary. */ mat = (Mat_SeqAIJ*)(*Aloc)->data; mat->free_a = PETSC_TRUE; mat->free_ij = PETSC_TRUE; mat->nonew = 0; } else if (scall == MAT_REUSE_MATRIX){ mat=(Mat_SeqAIJ*)(*Aloc)->data; ci = mat->i; cj = mat->j; ca = mat->a; for (i=0; iy);CHKERRQ(ierr); ierr = PetscFree(shell);CHKERRQ(ierr); ierr = MatDestroy_Shell(A);CHKERRQ(ierr); ierr = PetscObjectChangeTypeName((PetscObject)A,0);CHKERRQ(ierr); PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "MatWrapML_SeqAIJ" PetscErrorCode MatWrapML_SeqAIJ(ML_Operator *mlmat,Mat *newmat) { struct ML_CSR_MSRdata *matdata = (struct ML_CSR_MSRdata *)mlmat->data; PetscErrorCode ierr; PetscInt m=mlmat->outvec_leng,n=mlmat->invec_leng,*nnz,nz_max; PetscInt *ml_cols=matdata->columns,*aj,i,j,k; PetscScalar *ml_vals=matdata->values,*aa; PetscFunctionBegin; if ( mlmat->getrow == NULL) SETERRQ(PETSC_ERR_ARG_NULL,"mlmat->getrow = NULL"); if (m != n){ /* ML Pmat and Rmat are in CSR format. Pass array pointers into SeqAIJ matrix */ ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,m,n,matdata->rowptr,ml_cols,ml_vals,newmat);CHKERRQ(ierr); PetscFunctionReturn(0); } /* ML Amat is in MSR format. Copy its data into SeqAIJ matrix */ ierr = MatCreate(PETSC_COMM_SELF,newmat);CHKERRQ(ierr); ierr = MatSetSizes(*newmat,m,n,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr); ierr = MatSetType(*newmat,MATSEQAIJ);CHKERRQ(ierr); ierr = PetscMalloc((m+1)*sizeof(PetscInt),&nnz); nz_max = 0; for (i=0; i nz_max) nz_max = nnz[i]; } ierr = MatSeqAIJSetPreallocation(*newmat,0,nnz);CHKERRQ(ierr); ierr = MatSetOption(*newmat,MAT_COLUMNS_SORTED);CHKERRQ(ierr); /* check! */ nz_max++; ierr = PetscMalloc(nz_max*(sizeof(PetscInt)+sizeof(PetscScalar)),&aj);CHKERRQ(ierr); aa = (PetscScalar*)(aj + nz_max); for (i=0; ioutvec_leng; n = mlmat->invec_leng; if (!m || !n){ newmat = PETSC_NULL; } else { MLcomm = mlmat->comm; ierr = PetscNew(Mat_MLShell,&shellctx);CHKERRQ(ierr); ierr = MatCreateShell(MLcomm->USR_comm,m,n,PETSC_DETERMINE,PETSC_DETERMINE,shellctx,newmat);CHKERRQ(ierr); ierr = MatShellSetOperation(*newmat,MATOP_MULT,(void(*)(void))MatMult_ML);CHKERRQ(ierr); ierr = MatShellSetOperation(*newmat,MATOP_MULT_ADD,(void(*)(void))MatMultAdd_ML);CHKERRQ(ierr); shellctx->A = *newmat; shellctx->mlmat = mlmat; ierr = VecCreate(PETSC_COMM_WORLD,&shellctx->y);CHKERRQ(ierr); ierr = VecSetSizes(shellctx->y,m,PETSC_DECIDE);CHKERRQ(ierr); ierr = VecSetFromOptions(shellctx->y);CHKERRQ(ierr); (*newmat)->ops->destroy = MatDestroy_ML; } PetscFunctionReturn(0); } #undef __FUNCT__ #define __FUNCT__ "MatWrapML_MPIAIJ" PetscErrorCode MatWrapML_MPIAIJ(ML_Operator *mlmat,Mat *newmat) { struct ML_CSR_MSRdata *matdata = (struct ML_CSR_MSRdata *)mlmat->data; PetscInt *ml_cols=matdata->columns,*aj; PetscScalar *ml_vals=matdata->values,*aa; PetscErrorCode ierr; PetscInt i,j,k,*gordering; PetscInt m=mlmat->outvec_leng,n,*nnzA,*nnzB,*nnz,nz_max,row; Mat A; PetscFunctionBegin; if (mlmat->getrow == NULL) SETERRQ(PETSC_ERR_ARG_NULL,"mlmat->getrow = NULL"); n = mlmat->invec_leng; if (m != n) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"m %d must equal to n %d",m,n); ierr = MatCreate(mlmat->comm->USR_comm,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,m,n,PETSC_DECIDE,PETSC_DECIDE);CHKERRQ(ierr); ierr = MatSetType(A,MATMPIAIJ);CHKERRQ(ierr); ierr = PetscMalloc3(m,PetscInt,&nnzA,m,PetscInt,&nnzB,m,PetscInt,&nnz);CHKERRQ(ierr); nz_max = 0; for (i=0; i