Actual source code: ex99.c

  1: static char help[] = "Test LAPACK routine DSYGV() or DSYGVX(). \n\
  2: Reads PETSc matrix A and B (or create B=I), \n\
  3: then computes selected eigenvalues, and optionally, eigenvectors of \n\
  4: a real generalized symmetric-definite eigenproblem \n\
  5:  A*x = lambda*B*x \n\
  6: Input parameters include\n\
  7:   -f0 <input_file> : first file to load (small system)\n\
  8:   -fA <input_file> -fB <input_file>: second files to load (larger system) \n\
  9: e.g. ex99 -f0 $D/small -fA diamond_xxs_A -fB diamond_xxs_B \n\n";

 11:  #include petscmat.h
 12:  #include petscblaslapack.h
 13:  #include src/mat/impls/sbaij/seq/sbaij.h


 19: PetscInt main(PetscInt argc,char **args)
 20: {
 21:   Mat            A,B,A_dense,B_dense,mats[2],A_sp;
 22:   Vec            *evecs;
 23:   PetscViewer    fd;                /* viewer */
 24:   char           file[3][PETSC_MAX_PATH_LEN];     /* input file name */
 25:   PetscTruth     flg,flgA=PETSC_FALSE,flgB=PETSC_FALSE,TestSYGVX=PETSC_TRUE;
 27:   PetscTruth     preload=PETSC_TRUE,isSymmetric;
 28:   PetscScalar    sigma,one=1.0,*arrayA,*arrayB,*evecs_array,*work,*evals;
 29:   PetscMPIInt    size;
 30:   PetscInt       m,n,i,j,nevs,il,iu,stages[2];
 31:   PetscReal      vl,vu,abstol=1.e-8;
 32:   PetscBLASInt   *iwork,*ifail,lone=1,lwork,lierr,bn;
 33:   PetscInt       ievbd_loc[2],offset=0,cklvl=2;
 34:   PetscReal      tols[2];
 35:   Mat_SeqSBAIJ   *sbaij;
 36:   PetscScalar    *aa;
 37:   PetscInt       *ai,*aj;
 38:   PetscInt       nzeros[2],nz;
 39:   PetscReal      ratio;
 40: 
 41:   PetscInitialize(&argc,&args,(char *)0,help);
 42:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 43:   if (size != 1) SETERRQ(PETSC_ERR_SUP,"This is a uniprocessor example only!");
 44:   PetscLogStageRegister(&stages[0],"EigSolve");
 45:   PetscLogStageRegister(&stages[1],"EigCheck");

 47:   /* Determine files from which we read the two matrices */
 48:   PetscOptionsGetString(PETSC_NULL,"-f0",file[0],PETSC_MAX_PATH_LEN-1,&flg);
 49:   if (!flg) {
 50:     PetscOptionsGetString(PETSC_NULL,"-fA",file[0],PETSC_MAX_PATH_LEN-1,&flgA);
 51:     if (!flgA) SETERRQ(PETSC_ERR_USER,"Must indicate binary file with the -fA or -fB options");
 52:     PetscOptionsGetString(PETSC_NULL,"-fB",file[1],PETSC_MAX_PATH_LEN-1,&flgB);
 53:     preload = PETSC_FALSE;
 54:   } else {
 55:     PetscOptionsGetString(PETSC_NULL,"-fA",file[1],PETSC_MAX_PATH_LEN-1,&flgA);
 56:     if (!flgA) {preload = PETSC_FALSE;} /* don't bother with second system */
 57:     PetscOptionsGetString(PETSC_NULL,"-fB",file[2],PETSC_MAX_PATH_LEN-1,&flgB);
 58:   }

 60:   PreLoadBegin(preload,"Load system");
 61:     /* Load matrices */
 62:     PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[PreLoadIt],FILE_MODE_READ,&fd);
 63:     MatLoad(fd,MATSBAIJ,&A);
 64:     PetscViewerDestroy(fd);
 65:     MatGetSize(A,&m,&n);
 66:     if ((flgB && PreLoadIt) || (flgB && !preload)){
 67:       PetscViewerBinaryOpen(PETSC_COMM_WORLD,file[PreLoadIt+1],FILE_MODE_READ,&fd);
 68:       MatLoad(fd,MATSBAIJ,&B);
 69:       PetscViewerDestroy(fd);
 70:     } else { /* create B=I */
 71:       MatCreate(PETSC_COMM_WORLD,&B);
 72:       MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,m,n);
 73:       MatSetType(B,MATSEQSBAIJ);
 74:       MatSetFromOptions(B);
 75:       for (i=0; i<m; i++) {
 76:         MatSetValues(B,1,&i,1,&i,&one,INSERT_VALUES);
 77:       }
 78:       MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 79:       MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 80:     }
 81: 
 82:     /* Add a shift to A */
 83:     PetscOptionsGetScalar(PETSC_NULL,"-mat_sigma",&sigma,&flg);
 84:     if(flg) {
 85:       MatAXPY(A,sigma,B,DIFFERENT_NONZERO_PATTERN); /* A <- sigma*B + A */
 86:     }

 88:     /* Check whether A is symmetric */
 89:     PetscOptionsHasName(PETSC_NULL, "-check_symmetry", &flg);
 90:     if (flg) {
 91:       Mat Trans;
 92:       MatTranspose(A, &Trans);
 93:       MatEqual(A, Trans, &isSymmetric);
 94:       if (!isSymmetric) SETERRQ(PETSC_ERR_USER,"A must be symmetric");
 95:       MatDestroy(Trans);
 96:       if (flgB && PreLoadIt){
 97:         MatTranspose(B, &Trans);
 98:         MatEqual(B, Trans, &isSymmetric);
 99:         if (!isSymmetric) SETERRQ(PETSC_ERR_USER,"B must be symmetric");
100:         MatDestroy(Trans);
101:       }
102:     }

104:     /* View small entries of A */
105:     PetscOptionsHasName(PETSC_NULL, "-Asp_view", &flg);
106:     if (flg){
107:       MatCreate(PETSC_COMM_SELF,&A_sp);
108:       MatSetSizes(A_sp,PETSC_DECIDE,PETSC_DECIDE,m,n);
109:       MatSetType(A_sp,MATSEQSBAIJ);

111:       tols[0] = 1.e-6, tols[1] = 1.e-9;
112:       sbaij = (Mat_SeqSBAIJ*)A->data;
113:       ai    = sbaij->i;
114:       aj    = sbaij->j;
115:       aa    = sbaij->a;
116:       nzeros[0] = nzeros[1] = 0;
117:       for (i=0; i<m; i++) {
118:         nz = ai[i+1] - ai[i];
119:         for (j=0; j<nz; j++){
120:           if (PetscAbsScalar(*aa)<tols[0]) {
121:             MatSetValues(A_sp,1,&i,1,aj,aa,INSERT_VALUES);
122:             nzeros[0]++;
123:           }
124:           if (PetscAbsScalar(*aa)<tols[1]) nzeros[1]++;
125:           aa++; aj++;
126:         }
127:       }
128:       MatAssemblyBegin(A_sp,MAT_FINAL_ASSEMBLY);
129:       MatAssemblyEnd(A_sp,MAT_FINAL_ASSEMBLY);

131:       MatDestroy(A_sp);

133:       ratio = (PetscReal)nzeros[0]/sbaij->nz;
134:       PetscPrintf(PETSC_COMM_SELF," %d matrix entries < %e, ratio %G of %d nonzeros\n",nzeros[0],tols[0],ratio,sbaij->nz);
135:       PetscPrintf(PETSC_COMM_SELF," %d matrix entries < %e\n",nzeros[1],tols[1]);
136:     }

138:     /* Convert aij matrix to MatSeqDense for LAPACK */
139:     PetscTypeCompare((PetscObject)A,MATSEQDENSE,&flg);
140:     if (!flg) {
141:       MatConvert(A,MATSEQDENSE,MAT_INITIAL_MATRIX,&A_dense);
142:     }
143:     PetscTypeCompare((PetscObject)B,MATSEQDENSE,&flg);
144:     if (!flg) {MatConvert(B,MATSEQDENSE,MAT_INITIAL_MATRIX,&B_dense);}

146:     /* Solve eigenvalue problem: A*x = lambda*B*x */
147:     /*============================================*/
148:     lwork = 8*n;
149:     bn    = (PetscBLASInt)n;
150:     PetscMalloc(n*sizeof(PetscScalar),&evals);
151:     PetscMalloc(lwork*sizeof(PetscScalar),&work);
152:     MatGetArray(A_dense,&arrayA);
153:     MatGetArray(B_dense,&arrayB);

155:     if (!TestSYGVX){ /* test sygv()  */
156:       evecs_array = arrayA;
157:       LAPACKsygv_(&lone,"V","U",&bn,arrayA,&bn,arrayB,&bn,evals,work,&lwork,&lierr);
158:       nevs = m;
159:       il=1;
160:     } else { /* test sygvx()  */
161:       il = 1; iu=(PetscBLASInt)(.6*m); /* request 1 to 60%m evalues */
162:       PetscMalloc((m*n+1)*sizeof(PetscScalar),&evecs_array);
163:       PetscMalloc((6*n+1)*sizeof(PetscBLASInt),&iwork);
164:       ifail = iwork + 5*n;
165:       if(PreLoadIt){PetscLogStagePush(stages[0]);}
166:       /* in the case "I", vl and vu are not referenced */
167:       LAPACKsygvx_(&lone,"V","I","U",&bn,arrayA,&bn,arrayB,&bn,&vl,&vu,&il,&iu,&abstol,&nevs,evals,evecs_array,&n,work,&lwork,iwork,ifail,&lierr);
168:       if(PreLoadIt){PetscLogStagePop();}
169:       PetscFree(iwork);
170:     }
171:     MatRestoreArray(A,&arrayA);
172:     MatRestoreArray(B,&arrayB);

174:     if (nevs <= 0 ) SETERRQ1(PETSC_ERR_CONV_FAILED, "nev=%d, no eigensolution has found", nevs);
175:     /* View evals */
176:     PetscOptionsHasName(PETSC_NULL, "-eig_view", &flg);
177:     if (flg){
178:       printf(" %d evals: \n",nevs);
179:       for (i=0; i<nevs; i++) printf("%d  %G\n",i+il,evals[i]);
180:     }

182:     /* Check residuals and orthogonality */
183:     if(PreLoadIt){
184:       mats[0] = A; mats[1] = B;
185:       one = (PetscInt)one;
186:       PetscMalloc((nevs+1)*sizeof(Vec),&evecs);
187:       for (i=0; i<nevs; i++){
188:         VecCreate(PETSC_COMM_SELF,&evecs[i]);
189:         VecSetSizes(evecs[i],PETSC_DECIDE,n);
190:         VecSetFromOptions(evecs[i]);
191:         VecPlaceArray(evecs[i],evecs_array+i*n);
192:       }
193: 
194:       ievbd_loc[0] = 0; ievbd_loc[1] = nevs-1;
195:       tols[0] = 1.e-8;  tols[1] = 1.e-8;
196:       PetscLogStagePush(stages[1]);
197:       CkEigenSolutions(&cklvl,mats,evals,evecs,ievbd_loc,&offset,tols);
198:       PetscLogStagePop();
199:       for (i=0; i<nevs; i++){ VecDestroy(evecs[i]);}
200:       PetscFree(evecs);
201:     }
202: 
203:     /* Free work space. */
204:     if (TestSYGVX){PetscFree(evecs_array);}
205: 
206:     PetscFree(evals);
207:     PetscFree(work);

209:     MatDestroy(A_dense);
210:     MatDestroy(B_dense);
211:     MatDestroy(B);
212:     MatDestroy(A);

214:   PreLoadEnd();
215:   PetscFinalize();
216:   return 0;
217: }
218: /*------------------------------------------------
219:   Check the accuracy of the eigen solution
220:   ----------------------------------------------- */
221: /*
222:   input: 
223:      cklvl      - check level: 
224:                     1: check residual
225:                     2: 1 and check B-orthogonality locally 
226:      fA, fB     - matrix pencil
227:      eval, evec - eigenvalues and eigenvectors stored in this process
228:      ievbd_loc  - local eigenvalue bounds, see eigc()
229:      offset     - see eigc()
230:      tols[0]    - reporting tol_res: || A evec[i] - eval[i] B evec[i]||
231:      tols[1]    - reporting tol_orth: evec[i] B evec[j] - delta_ij
232: */
233: #undef DEBUG_CkEigenSolutions
236: PetscErrorCode CkEigenSolutions(PetscInt *fcklvl,Mat *mats,
237:                    PetscReal *eval,Vec *evec,PetscInt *ievbd_loc,PetscInt *offset, 
238:                    PetscReal *tols)
239: {
240:   PetscInt     ierr,cklvl=*fcklvl,nev_loc,i,j;
241:   Mat          A=mats[0], B=mats[1];
242:   Vec          vt1,vt2; /* tmp vectors */
243:   PetscReal    norm,tmp,dot,norm_max,dot_max;

246:   nev_loc = ievbd_loc[1] - ievbd_loc[0];
247:   if (nev_loc == 0) return(0);

249:   nev_loc += (*offset);
250:   VecDuplicate(evec[*offset],&vt1);
251:   VecDuplicate(evec[*offset],&vt2);

253:   switch (cklvl){
254:   case 2:
255:     dot_max = 0.0;
256:     for (i = *offset; i<nev_loc; i++){
257:       MatMult(B, evec[i], vt1);
258:       for (j=i; j<nev_loc; j++){
259:         VecDot(evec[j],vt1,&dot);
260:         if (j == i){
261:           dot = PetscAbsScalar(dot - 1.0);
262:         } else {
263:           dot = PetscAbsScalar(dot);
264:         }
265:         if (dot > dot_max) dot_max = dot;
266: #ifdef DEBUG_CkEigenSolutions
267:         if (dot > tols[1] ) {
268:           VecNorm(evec[i],NORM_INFINITY,&norm);
269:           PetscPrintf(PETSC_COMM_SELF,"|delta(%d,%d)|: %G, norm: %G\n",i,j,dot,norm);
270:         }
271: #endif
272:       } /* for (j=i; j<nev_loc; j++) */
273:     }
274:     PetscPrintf(PETSC_COMM_SELF,"    max|(x_j*B*x_i) - delta_ji|: %G\n",dot_max);

276:   case 1:
277:     norm_max = 0.0;
278:     for (i = *offset; i< nev_loc; i++){
279:       MatMult(A, evec[i], vt1);
280:       MatMult(B, evec[i], vt2);
281:       tmp  = -eval[i];
282:       VecAXPY(vt1,tmp,vt2);
283:       VecNorm(vt1, NORM_INFINITY, &norm);
284:       norm = PetscAbsScalar(norm);
285:       if (norm > norm_max) norm_max = norm;
286: #ifdef DEBUG_CkEigenSolutions
287:       /* sniff, and bark if necessary */
288:       if (norm > tols[0]){
289:         printf( "  residual violation: %d, resi: %g\n",i, norm);
290:       }
291: #endif
292:     }
293: 
294:       PetscPrintf(PETSC_COMM_SELF,"    max_resi:                    %G\n", norm_max);
295: 
296:    break;
297:   default:
298:     PetscPrintf(PETSC_COMM_SELF,"Error: cklvl=%d is not supported \n",cklvl);
299:   }
300:   VecDestroy(vt2);
301:   VecDestroy(vt1);
302:   return(0);
303: }