Actual source code: ex29.c

  2: /*#define HAVE_DA_HDF*/

  4: /* solve the equations for the perturbed magnetic field only */
  5: #define EQ 

  7: /* turning this on causes instability?!? */
  8: /* #define UPWINDING  */

 10: static char help[] = "Hall MHD with in two dimensions with time stepping and multigrid.\n\n\
 11: -options_file ex29.options\n\
 12: other PETSc options\n\
 13: -resistivity <eta>\n\
 14: -viscosity <nu>\n\
 15: -skin_depth <d_e>\n\
 16: -larmor_radius <rho_s>\n\
 17: -contours : draw contour plots of solution\n\n";

 19: /*T
 20:    Concepts: SNES^solving a system of nonlinear equations (parallel multicomponent example);
 21:    Concepts: DA^using distributed arrays;
 22:    Concepts: multicomponent
 23:    Processors: n
 24: T*/

 26: /* ------------------------------------------------------------------------

 28:     We thank Kai Germaschewski for contributing the FormFunctionLocal()

 30:   ------------------------------------------------------------------------- */

 32: /* 
 33:    Include "petscda.h" so that we can use distributed arrays (DAs).
 34:    Include "petscsnes.h" so that we can use SNES solvers.  
 35:    Include "petscmg.h" to control the multigrid solvers. 
 36:    Note that these automatically include:
 37:      petsc.h       - base PETSc routines   petscvec.h - vectors
 38:      petscsys.h    - system routines       petscmat.h - matrices
 39:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 40:      petscviewer.h - viewers               petscpc.h  - preconditioners
 41:      petscksp.h   - linear solvers 
 42: */
 43:  #include petscsnes.h
 44:  #include petscda.h
 45:  #include petscmg.h
 46:  #include petscdmmg.h

 48: #ifdef HAVE_DA_HDF
 49: PetscInt DAVecHDFOutput(DA,Vec,char*);
 50: #endif

 52: #define D_x(x,m,i,j)  (p5 * (x[(j)][(i)+1].m - x[(j)][(i)-1].m) * dhx)
 53: #define D_xm(x,m,i,j) ((x[(j)][(i)].m - x[(j)][(i)-1].m) * dhx)
 54: #define D_xp(x,m,i,j) ((x[(j)][(i+1)].m - x[(j)][(i)].m) * dhx)
 55: #define D_y(x,m,i,j)  (p5 * (x[(j)+1][(i)].m - x[(j)-1][(i)].m) * dhy)
 56: #define D_ym(x,m,i,j) ((x[(j)][(i)].m - x[(j)-1][(i)].m) * dhy)
 57: #define D_yp(x,m,i,j) ((x[(j)+1][(i)].m - x[(j)][(i)].m) * dhy)
 58: #define D_xx(x,m,i,j) ((x[(j)][(i)+1].m - two*x[(j)][(i)].m + x[(j)][(i)-1].m) * hydhx * dhxdhy)
 59: #define D_yy(x,m,i,j) ((x[(j)+1][(i)].m - two*x[(j)][(i)].m + x[(j)-1][(i)].m) * hxdhy * dhxdhy)
 60: #define Lapl(x,m,i,j) (D_xx(x,m,i,j) + D_yy(x,m,i,j))
 61: #define lx            (2.*3.1415926)
 62: #define ly            (4.*3.1415926)
 63: #define sqr(a)        ((a)*(a))

 65: /* 
 66:    User-defined routines and data structures
 67: */

 69: typedef struct {
 70:   PetscReal      fnorm_ini,dt_ini;
 71:   PetscReal      dt,dt_out;
 72:   PetscReal      ptime;
 73:   PetscReal      max_time;
 74:   PetscReal      fnorm_ratio;
 75:   PetscInt       ires,itstep;
 76:   PetscInt       max_steps,print_freq;
 77:   PetscReal      t;
 78:   PetscScalar    fnorm;

 80:   PetscTruth     ts_monitor;           /* print information about each time step */
 81:   PetscReal      dump_time;            /* time to dump solution to a file */
 82:   PetscViewer    socketviewer;         /* socket to dump solution at each timestep for visualization */
 83: } TstepCtx;

 85: typedef struct {
 86:   PetscScalar phi,psi,U,F;
 87: } Field;

 89: typedef struct {
 90:   PassiveScalar phi,psi,U,F;
 91: } PassiveField;

 93: typedef struct {
 94:   PetscInt     mglevels;
 95:   PetscInt     cycles;           /* number of time steps for integration */
 96:   PassiveReal  nu,eta,d_e,rho_s; /* physical parameters */
 97:   PetscTruth   draw_contours;    /* flag - 1 indicates drawing contours */
 98:   PetscTruth   second_order;
 99:   PetscTruth   PreLoading;
100: } Parameters;

102: typedef struct {
103:   Vec          Xoldold,Xold;
104:   TstepCtx     *tsCtx;
105:   Parameters    *param;
106: } AppCtx;


120: int main(int argc,char **argv)
121: {
123:   DMMG           *dmmg;       /* multilevel grid structure */
124:   AppCtx         *user;       /* user-defined work context (one for each level) */
125:   TstepCtx       tsCtx;       /* time-step parameters (one total) */
126:   Parameters      param;       /* physical parameters (one total) */
127:   PetscInt       i,m,n,mx,my;
128:   DA             da;
129:   PetscReal      dt_ratio;
130:   PetscInt       dfill[16] = {1,0,1,0,
131:                               0,1,0,1,
132:                               0,0,1,1,
133:                               0,1,1,1};
134:   PetscInt       ofill[16] = {1,0,0,0,
135:                               0,1,0,0,
136:                               1,1,1,1,
137:                               1,1,1,1};

139:   PetscInitialize(&argc,&argv,(char *)0,help);


142:   PreLoadBegin(PETSC_TRUE,"SetUp");

144:   param.PreLoading = PreLoading;
145:     DMMGCreate(PETSC_COMM_WORLD,1,&user,&dmmg);
146:     param.mglevels = DMMGGetLevels(dmmg);

148:     /*
149:       Create distributed array multigrid object (DMMG) to manage
150:       parallel grid and vectors for principal unknowns (x) and
151:       governing residuals (f)
152:     */
153:     DACreate2d(PETSC_COMM_WORLD, DA_XYPERIODIC, DA_STENCIL_STAR, -5, -5,
154:                       PETSC_DECIDE, PETSC_DECIDE, 4, 1, 0, 0, &da);

156:     /* overwrite the default sparsity pattern toone specific for
157:        this code's nonzero structure */
158:     DASetBlockFills(da,dfill,ofill);

160:     DMMGSetDM(dmmg,(DM)da);
161:     DADestroy(da);

163:     /* default physical parameters */
164:     param.nu    = 0;
165:     param.eta   = 1e-3;
166:     param.d_e   = 0.2;
167:     param.rho_s = 0;
168:     param.second_order = PETSC_FALSE;

170:     PetscOptionsGetReal(PETSC_NULL, "-viscosity", &param.nu,PETSC_NULL);

172:     PetscOptionsGetReal(PETSC_NULL, "-resistivity", &param.eta,PETSC_NULL);

174:     PetscOptionsGetReal(PETSC_NULL, "-skin_depth", &param.d_e,PETSC_NULL);

176:     PetscOptionsGetReal(PETSC_NULL, "-larmor_radius", &param.rho_s,PETSC_NULL);

178:     PetscOptionsHasName(PETSC_NULL, "-contours", &param.draw_contours);

180:     PetscOptionsHasName(PETSC_NULL, "-second_order", &param.second_order);

182:     DASetFieldName(DMMGGetDA(dmmg), 0, "phi");

184:     DASetFieldName(DMMGGetDA(dmmg), 1, "psi");

186:     DASetFieldName(DMMGGetDA(dmmg), 2, "U");

188:     DASetFieldName(DMMGGetDA(dmmg), 3, "F");

190:     /*======================================================================*/
191:     /* Initialize stuff related to time stepping */
192:     /*======================================================================*/

194:     DAGetInfo(DMMGGetDA(dmmg),0,&mx,&my,0,0,0,0,0,0,0,0);

196:     tsCtx.fnorm_ini   = 0;
197:     tsCtx.max_steps   = 1000000;
198:     tsCtx.max_time    = 1.0e+12;
199:     /* use for dt = min(dx,dy); multiplied by dt_ratio below */
200:     tsCtx.dt          = PetscMin(lx/mx,ly/my);
201:     tsCtx.fnorm_ratio = 1.0e+10;
202:     tsCtx.t           = 0;
203:     tsCtx.dt_out      = 10;
204:     tsCtx.print_freq  = tsCtx.max_steps;
205:     tsCtx.ts_monitor  = PETSC_FALSE;
206:     tsCtx.dump_time   = -1.0;

208:     PetscOptionsGetInt(PETSC_NULL, "-max_st", &tsCtx.max_steps,PETSC_NULL);
209:     PetscOptionsGetReal(PETSC_NULL, "-ts_rtol", &tsCtx.fnorm_ratio,PETSC_NULL);
210:     PetscOptionsGetInt(PETSC_NULL, "-print_freq", &tsCtx.print_freq,PETSC_NULL);

212:     dt_ratio = 1.0;
213:     PetscOptionsGetReal(PETSC_NULL, "-dt_ratio", &dt_ratio,PETSC_NULL);
214:     tsCtx.dt *= dt_ratio;

216:     PetscOptionsHasName(PETSC_NULL, "-ts_monitor", &tsCtx.ts_monitor);
217:     PetscOptionsGetReal(PETSC_NULL, "-dump", &tsCtx.dump_time,PETSC_NULL);


220:     tsCtx.socketviewer = 0;
221: #if defined(PETSC_USE_SOCKET_VIEWER)
222:     {
223:       PetscTruth flg;
224:       PetscOptionsHasName(PETSC_NULL, "-socket_viewer", &flg);
225:       if (flg && !PreLoading) {
226:         tsCtx.ts_monitor = PETSC_TRUE;
227:         PetscViewerSocketOpen(PETSC_COMM_WORLD,0,PETSC_DECIDE,&tsCtx.socketviewer);
228:       }
229:     }
230: #endif

232:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
233:        Create user context, set problem data, create vector data structures.
234:        Also, compute the initial guess.
235:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
236:     /* create application context for each level */
237:     PetscMalloc(param.mglevels*sizeof(AppCtx),&user);
238:     for (i=0; i<param.mglevels; i++) {
239:       /* create work vectors to hold previous time-step solution and
240:          function value */
241:       VecDuplicate(dmmg[i]->x, &user[i].Xoldold);
242:       VecDuplicate(dmmg[i]->x, &user[i].Xold);
243:       user[i].tsCtx = &tsCtx;
244:       user[i].param = &param;
245:       DMMGSetUser(dmmg,i,&user[i]);
246:     }
247: 
248:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
249:        Create nonlinear solver context
250:        
251:        Process adiC(20):  AddTSTermLocal AddTSTermLocal2 FormFunctionLocal FormFunctionLocali
252:        Process blockadiC(4):  FormFunctionLocali4
253:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
254:     DMMGSetSNESLocal(dmmg, FormFunctionLocal, 0,ad_FormFunctionLocal, admf_FormFunctionLocal);
255:     DMMGSetSNESLocali(dmmg,FormFunctionLocali,0,admf_FormFunctionLocali);
256:     DMMGSetSNESLocalib(dmmg,FormFunctionLocali4,0,admfb_FormFunctionLocali4);
257: 
258:    /* attach nullspace to each level of the preconditioner */
259:     DMMGSetNullSpace(dmmg,PETSC_FALSE,1,CreateNullSpace);
260: 
261:     PetscPrintf(PETSC_COMM_WORLD, "finish setupNull!");

263:     if (PreLoading) {
264:       PetscPrintf(PETSC_COMM_WORLD, "# viscosity = %G, resistivity = %G, "
265:                          "skin_depth # = %G, larmor_radius # = %G\n",
266:                          param.nu, param.eta, param.d_e, param.rho_s);
267:       DAGetInfo(DMMGGetDA(dmmg),0,&m,&n,0,0,0,0,0,0,0,0);
268:       PetscPrintf(PETSC_COMM_WORLD,"Problem size %D by %D\n",m,n);
269:       PetscPrintf(PETSC_COMM_WORLD,"dx %G dy %G dt %G ratio dt/min(dx,dy) %G\n",lx/mx,ly/my,tsCtx.dt,dt_ratio);
270:     }

272: 
273: 
274:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
275:        Solve the nonlinear system
276:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
277: 
278:     PreLoadStage("Solve");

280:     if (param.draw_contours) {
281:       VecView(((AppCtx*)DMMGGetUser(dmmg,param.mglevels-1))->Xold,PETSC_VIEWER_DRAW_WORLD);
282:     }

284:     Update(dmmg);

286:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
287:        Free work space.  All PETSc objects should be destroyed when they
288:        are no longer needed.
289:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
290: 
291:     for (i=0; i<param.mglevels; i++) {
292:       VecDestroy(user[i].Xoldold);
293:       VecDestroy(user[i].Xold);
294:     }
295:     PetscFree(user);
296:     DMMGDestroy(dmmg);

298:     PreLoadEnd();
299: 
300:   PetscFinalize();
301:   return 0;
302: }

304: /* ------------------------------------------------------------------- */
307: /* ------------------------------------------------------------------- */
308: PetscErrorCode Gnuplot(DA da, Vec X, double mtime)
309: {
310:   PetscInt       i,j,xs,ys,xm,ym;
311:   PetscInt       xints,xinte,yints,yinte;
313:   Field          **x;
314:   FILE           *f;
315:   char           fname[PETSC_MAX_PATH_LEN];
316:   PetscMPIInt    rank;

318:   MPI_Comm_rank(PETSC_COMM_WORLD,&rank);

320:   sprintf(fname, "out-%g-%d.dat", mtime, rank);

322:   f = fopen(fname, "w");

324:   DAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);

326:   DAVecGetArray(da,X,&x);

328:   xints = xs; xinte = xs+xm; yints = ys; yinte = ys+ym;

330:   for (j=yints; j<yinte; j++) {
331:     for (i=xints; i<xinte; i++) {
332:       PetscFPrintf(PETSC_COMM_WORLD, f,
333:                           "%D %D %G %G %G %G %G %G\n",
334:                           i, j, 0.0, 0.0,
335:                           PetscAbsScalar(x[j][i].U), PetscAbsScalar(x[j][i].F),
336:                           PetscAbsScalar(x[j][i].phi), PetscAbsScalar(x[j][i].psi));
337:     }
338:     PetscFPrintf(PETSC_COMM_WORLD,f, "\n");
339:   }
340:   DAVecRestoreArray(da,X,&x);
341:   fclose(f);
342:   return 0;
343: }

345: /* ------------------------------------------------------------------- */
348: /* ------------------------------------------------------------------- */
349: PetscErrorCode Initialize(DMMG *dmmg)
350: {
351:   AppCtx         *appCtx = (AppCtx*)DMMGGetUser(dmmg,0);
352:   Parameters      *param = appCtx->param;
353:   DA             da;
355:   PetscInt       i,j,mx,my,xs,ys,xm,ym;
356:   PetscReal      two = 2.0,one = 1.0;
357:   PetscReal      hx,hy,dhx,dhy,hxdhy,hydhx,hxhy,dhxdhy;
358:   PetscReal      d_e,rho_s,de2,xx,yy;
359:   Field          **x, **localx;
360:   Vec            localX;
361:   PetscTruth     flg;

364:   PetscOptionsHasName(0,"-restart",&flg);
365:   if (flg) {
366:     PetscViewer viewer;
367:     PetscViewerBinaryOpen(PETSC_COMM_WORLD,"binaryoutput",FILE_MODE_READ,&viewer);
368:     VecLoadIntoVector(viewer,dmmg[param->mglevels-1]->x);
369:     PetscViewerDestroy(viewer);
370:     return(0);
371:   }

373:   d_e   = param->d_e;
374:   rho_s = param->rho_s;
375:   de2   = sqr(param->d_e);

377:   da   = (DA)(dmmg[param->mglevels-1]->dm);
378:   DAGetInfo(da,0,&mx,&my,0,0,0,0,0,0,0,0);

380:   dhx   = mx/lx;              dhy = my/ly;
381:   hx    = one/dhx;             hy = one/dhy;
382:   hxdhy = hx*dhy;           hydhx = hy*dhx;
383:   hxhy  = hx*hy;           dhxdhy = dhx*dhy;

385:   /*
386:      Get local grid boundaries (for 2-dimensional DA):
387:        xs, ys   - starting grid indices (no ghost points)
388:        xm, ym   - widths of local grid (no ghost points)
389:   */
390:   DAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);

392:   DAGetLocalVector(da,&localX);
393:   /*
394:      Get a pointer to vector data.
395:        - For default PETSc vectors, VecGetArray() returns a pointer to
396:          the data array.  Otherwise, the routine is implementation dependent.
397:        - You MUST call VecRestoreArray() when you no longer need access to
398:          the array.
399:   */
400:   DAVecGetArray(da,dmmg[param->mglevels-1]->x,&x);
401:   DAVecGetArray(da,localX,&localx);

403:   /*
404:      Compute initial solution over the locally owned part of the grid
405:   */
406: #if defined (PETSC_HAVE_ERF)
407:   {
408:     PetscReal eps = lx/ly;
409:     PetscReal pert = 1e-4;
410:     PetscReal k = 1.*eps;
411:     PetscReal gam;

413:     if (d_e < rho_s) d_e = rho_s;
414:     gam = k * d_e;
415:     for (j=ys-1; j<ys+ym+1; j++) {
416:       yy = j * hy;
417:       for (i=xs-1; i<xs+xm+1; i++) {
418:         xx = i * hx;
419:         if (xx < -3.1416926/2) {
420:           localx[j][i].phi = pert * gam / k * erf((xx + 3.1415926) / (sqrt(2.0) * d_e)) * (-sin(k*yy));
421:         } else if (xx < 3.1415926/2) {
422:           localx[j][i].phi = - pert * gam / k * erf(xx / (sqrt(2.0) * d_e)) * (-sin(k*yy));
423:         } else if (xx < 3*3.1415926/2){
424:           localx[j][i].phi = pert * gam / k * erf((xx - 3.1415926) / (sqrt(2.0) * d_e)) * (-sin(k*yy));
425:         } else {
426:           localx[j][i].phi = - pert * gam / k * erf((xx - 2.*3.1415926) / (sqrt(2.0) * d_e)) * (-sin(k*yy));
427:         }
428: #ifdef EQ
429:         localx[j][i].psi = 0.;
430: #else
431:         localx[j][i].psi = cos(xx);
432: #endif
433:       }
434:     }

436:     for (j=ys; j<ys+ym; j++) {
437:       for (i=xs; i<xs+xm; i++) {
438:         x[j][i].U   = Lapl(localx,phi,i,j);
439:         x[j][i].F   = localx[j][i].psi - de2 * Lapl(localx,psi,i,j);
440:         x[j][i].phi = localx[j][i].phi;
441:         x[j][i].psi = localx[j][i].psi;
442:       }
443:     }
444:   }
445: #else
446:   SETERRQ(1,"erf() not available on this machine");
447: #endif

449:   /*
450:      Restore vector
451:   */
452:   DAVecRestoreArray(da,dmmg[param->mglevels-1]->x,&x);
453: 
454:   DAVecRestoreArray(da,localX,&localx);
455: 
456:   DARestoreLocalVector(da,&localX);
457: 

459:   return(0);
460: }

464: PetscErrorCode ComputeMaxima(DA da, Vec X, PetscReal t)
465: {
467:   PetscInt       i,j,mx,my,xs,ys,xm,ym;
468:   PetscInt       xints,xinte,yints,yinte;
469:   Field          **x;
470:   double         norm[4] = {0,0,0,0};
471:   double         gnorm[4];
472:   MPI_Comm       comm;


476:   DAGetInfo(da,0,&mx,&my,0,0,0,0,0,0,0,0);

478:   DAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);
479: 

481:   xints = xs; xinte = xs+xm; yints = ys; yinte = ys+ym;

483:   DAVecGetArray(da, X, &x);

485:   for (j=yints; j<yinte; j++) {
486:     for (i=xints; i<xinte; i++) {
487:       norm[0] = PetscMax(norm[0],PetscAbsScalar(x[j][i].U));
488:       norm[1] = PetscMax(norm[1],PetscAbsScalar(x[j][i].F));
489:       norm[2] = PetscMax(norm[2],PetscAbsScalar(x[j][i].phi));
490:       norm[3] = PetscMax(norm[3],PetscAbsScalar(x[j][i].psi));
491:     }
492:   }

494:   DAVecRestoreArray(da,X,&x);

496:   PetscObjectGetComm((PetscObject)da, &comm);
497:   MPI_Allreduce(norm, gnorm, 4, MPI_DOUBLE, MPI_MAX, comm);

499:   PetscFPrintf(PETSC_COMM_WORLD, stderr,"%G\t%G\t%G\t%G\t%G\n",t, gnorm[0], gnorm[1], gnorm[2], gnorm[3]);

501:   return(0);
502: }

506: PetscErrorCode FormFunctionLocal(DALocalInfo *info,Field **x,Field **f,void *ptr)
507: {
508:   AppCtx         *user = (AppCtx*)ptr;
509:   TstepCtx       *tsCtx = user->tsCtx;
510:   Parameters      *param = user->param;
512:   PetscInt       xints,xinte,yints,yinte,i,j;
513:   PassiveReal    hx,hy,dhx,dhy,hxdhy,hydhx,hxhy,dhxdhy;
514:   PassiveReal    de2,rhos2,nu,eta,dde2;
515:   PassiveReal    two = 2.0,one = 1.0,p5 = 0.5;
516:   PassiveReal    F_eq_x,By_eq;
517:   PetscScalar    xx;
518:   PetscScalar    vx,vy,avx,avy,vxp,vxm,vyp,vym;
519:   PetscScalar    Bx,By,aBx,aBy,Bxp,Bxm,Byp,Bym;

522:   de2     = sqr(param->d_e);
523:   rhos2   = sqr(param->rho_s);
524:   nu      = param->nu;
525:   eta     = param->eta;
526:   dde2    = one/de2;

528:   /* 
529:      Define mesh intervals ratios for uniform grid.
530:      [Note: FD formulae below are normalized by multiplying through by
531:      local volume element to obtain coefficients O(1) in two dimensions.]
532:   */
533:   dhx   = info->mx/lx;        dhy   = info->my/ly;
534:   hx    = one/dhx;             hy   = one/dhy;
535:   hxdhy = hx*dhy;           hydhx   = hy*dhx;
536:   hxhy  = hx*hy;             dhxdhy = dhx*dhy;

538:   xints = info->xs; xinte = info->xs+info->xm;
539:   yints = info->ys; yinte = info->ys+info->ym;

541:   /* Compute over the interior points */
542:   for (j=yints; j<yinte; j++) {
543:     for (i=xints; i<xinte; i++) {
544: #ifdef EQ
545:       xx = i * hx;
546:       F_eq_x = - (1. + de2) * sin(PetscAbsScalar(xx));
547:       By_eq = sin(PetscAbsScalar(xx));
548: #else
549:       F_eq_x = 0.;
550:       By_eq = 0.;
551: #endif

553:       /*
554:        * convective coefficients for upwinding
555:        */

557:       vx  = - D_y(x,phi,i,j);
558:       vy  =   D_x(x,phi,i,j);
559:       avx = PetscAbsScalar(vx); vxp = p5*(vx+avx); vxm = p5*(vx-avx);
560:       avy = PetscAbsScalar(vy); vyp = p5*(vy+avy); vym = p5*(vy-avy);
561: #ifndef UPWINDING
562:       vxp = vxm = p5*vx;
563:       vyp = vym = p5*vy;
564: #endif

566:       Bx  =   D_y(x,psi,i,j);
567:       By  = - D_x(x,psi,i,j) + By_eq;
568:       aBx = PetscAbsScalar(Bx); Bxp = p5*(Bx+aBx); Bxm = p5*(Bx-aBx);
569:       aBy = PetscAbsScalar(By); Byp = p5*(By+aBy); Bym = p5*(By-aBy);
570: #ifndef UPWINDING
571:       Bxp = Bxm = p5*Bx;
572:       Byp = Bym = p5*By;
573: #endif

575:       /* Lap(phi) - U */
576:       f[j][i].phi = (Lapl(x,phi,i,j) - x[j][i].U) * hxhy;

578:       /* psi - d_e^2 * Lap(psi) - F */
579:       f[j][i].psi = (x[j][i].psi - de2 * Lapl(x,psi,i,j) - x[j][i].F) * hxhy;

581:       /* vx * U_x + vy * U_y - (B_x * F_x + B_y * F_y) / d_e^2
582:          - nu Lap(U) */
583:       f[j][i].U  =
584:         ((vxp * (D_xm(x,U,i,j)) + vxm * (D_xp(x,U,i,j)) +
585:           vyp * (D_ym(x,U,i,j)) + vym * (D_yp(x,U,i,j))) -
586:          (Bxp * (D_xm(x,F,i,j) + F_eq_x) + Bxm * (D_xp(x,F,i,j) + F_eq_x) +
587:           Byp * (D_ym(x,F,i,j)) + Bym * (D_yp(x,F,i,j))) * dde2 -
588:          nu * Lapl(x,U,i,j)) * hxhy;
589: 
590:       /* vx * F_x + vy * F_y - rho_s^2 * (B_x * U_x + B_y * U_y)
591:          - eta * Lap(psi) */
592:       f[j][i].F  =
593:         ((vxp * (D_xm(x,F,i,j) + F_eq_x) + vxm * (D_xp(x,F,i,j) + F_eq_x) +
594:           vyp * (D_ym(x,F,i,j)) + vym * (D_yp(x,F,i,j))) -
595:          (Bxp * (D_xm(x,U,i,j)) + Bxm * (D_xp(x,U,i,j)) +
596:           Byp * (D_ym(x,U,i,j)) + Bym * (D_yp(x,U,i,j))) * rhos2 -
597:          eta * Lapl(x,psi,i,j)) * hxhy;
598:     }
599:   }

601:   /* Add time step contribution */
602:   if (tsCtx->ires) {
603:     if ((param->second_order) && (tsCtx->itstep > 0)){
604:       AddTSTermLocal2(info,x,f,user);
605:     } else {
606:       AddTSTermLocal(info,x,f,user);
607:     }
608:   }

610:   /*
611:      Flop count (multiply-adds are counted as 2 operations)
612:   */
613:   /*  PetscLogFlops(84*info->ym*info->xm); FIXME */
614:   return(0);
615: }

617: /*---------------------------------------------------------------------*/
620: PetscErrorCode Update(DMMG *dmmg)
621: /*---------------------------------------------------------------------*/
622: {
623:   AppCtx          *user = (AppCtx *) DMMGGetUser(dmmg,0);
624:   TstepCtx        *tsCtx = user->tsCtx;
625:   Parameters       *param = user->param;
626:   SNES            snes;
627:   PetscErrorCode  ierr;
628:   PetscInt        its,lits,i;
629:   PetscInt        max_steps;
630:   PetscInt        nfailsCum = 0,nfails = 0;
631:   static PetscInt ic_out;
632:   PetscTruth      ts_monitor = (tsCtx->ts_monitor && !param->PreLoading) ? PETSC_TRUE : PETSC_FALSE;


636:   if (param->PreLoading)
637:     max_steps = 1;
638:   else
639:     max_steps = tsCtx->max_steps;
640: 
641:   Initialize(dmmg);

643:   snes = DMMGGetSNES(dmmg);

645:   for (tsCtx->itstep = 0; tsCtx->itstep < max_steps; tsCtx->itstep++) {
646: 
647:     PetscPrintf(PETSC_COMM_WORLD, "time step=%d!\n",tsCtx->itstep);
648:     if ((param->second_order) && (tsCtx->itstep > 0))
649:     {
650:       for (i=param->mglevels-1; i>=0 ;i--)
651:       {
652:         VecCopy(((AppCtx*)DMMGGetUser(dmmg,i))->Xold,((AppCtx*)DMMGGetUser(dmmg,i))->Xoldold);
653:       }
654:     }

656:     for (i=param->mglevels-1; i>0 ;i--) {
657:       MatRestrict(dmmg[i]->R, dmmg[i]->x, dmmg[i-1]->x);
658:       VecPointwiseMult(dmmg[i-1]->x,dmmg[i-1]->x,dmmg[i]->Rscale);
659:       VecCopy(dmmg[i]->x, ((AppCtx*)DMMGGetUser(dmmg,i))->Xold);
660:     }
661:     VecCopy(dmmg[0]->x, ((AppCtx*)DMMGGetUser(dmmg,0))->Xold);

663:     DMMGSolve(dmmg);



667:     if (tsCtx->itstep == 665000)
668:     {
669:       KSP          ksp;
670:       PC           pc;
671:       Mat          mat, pmat;
672:       MatStructure flag;
673:       PetscViewer  viewer;
674:       char         file[PETSC_MAX_PATH_LEN];

676:       PetscStrcpy(file, "matrix");

678:       PetscViewerBinaryOpen(PETSC_COMM_WORLD, file, FILE_MODE_WRITE, &viewer);

680:       SNESGetKSP(snes, &ksp);

682:       KSPGetPC(ksp, &pc);

684:       PCGetOperators(pc, &mat, &pmat, &flag);

686:       MatView(mat, viewer);

688:       PetscViewerDestroy(viewer);
689:       SETERRQ(1,"Done saving Jacobian");
690:     }


693:     tsCtx->t += tsCtx->dt;

695:     /* save restart solution if requested at a particular time, then exit */
696:     if (tsCtx->dump_time > 0.0 && tsCtx->t >= tsCtx->dump_time) {
697:       Vec v = DMMGGetx(dmmg);
698:       VecView(v,PETSC_VIEWER_BINARY_WORLD);
699:       SETERRQ1(1,"Saved solution at time %G",tsCtx->t);
700:     }

702:     if (ts_monitor)
703:     {
704:       SNESGetIterationNumber(snes, &its);
705:       SNESGetNumberLinearIterations(snes, &lits);
706:       SNESGetNumberUnsuccessfulSteps(snes, &nfails);
707:       SNESGetFunctionNorm(snes, &tsCtx->fnorm);

709:       nfailsCum += nfails;
710:       if (nfailsCum >= 2)
711:         SETERRQ(1, "unable to find a newton step");

713:       PetscPrintf(PETSC_COMM_WORLD,
714:                          "time step = %D, time = %G, number of nonlinear steps = %D, "
715:                          "number of linear steps = %D, norm of the function = %G\n",
716:                          tsCtx->itstep + 1, tsCtx->t, its, lits, PetscAbsScalar(tsCtx->fnorm));

718:       /* send solution over to Matlab, to be visualized (using ex29.m) */
719:       if (!param->PreLoading && tsCtx->socketviewer)
720:       {
721:         Vec v;
722:         SNESGetSolution(snes, &v);
723: #if defined(PETSC_USE_SOCKET_VIEWER)
724:         VecView(v, tsCtx->socketviewer);
725: #endif
726:       }
727:     }

729:     if (!param->PreLoading) {
730:       if (param->draw_contours) {
731:         VecView(DMMGGetx(dmmg),PETSC_VIEWER_DRAW_WORLD);
732:       }

734:       if (1 && ts_monitor) {
735:         /* compute maxima */
736:         ComputeMaxima((DA) dmmg[param->mglevels-1]->dm,dmmg[param->mglevels-1]->x,tsCtx->t);
737:         /* output */
738:         if (ic_out++ == (int)(tsCtx->dt_out / tsCtx->dt + .5)) {
739: #ifdef HAVE_DA_HDF
740:           char fname[PETSC_MAX_PATH_LEN];

742:           sprintf(fname, "out-%G.hdf", tsCtx->t);
743:           DAVecHDFOutput(DMMGGetDA(dmmg), DMMGGetx(dmmg), fname);
744: #else
745: /*
746:           Gnuplot(DMMGGetDA(dmmg), DMMGGetx(dmmg), tsCtx->t);
747:           
748: */
749: #endif
750:           ic_out = 1;
751:         }
752:       }
753:     }
754:   } /* End of time step loop */
755: 
756:   if (!param->PreLoading){
757:     SNESGetFunctionNorm(snes,&tsCtx->fnorm);
758:     PetscPrintf(PETSC_COMM_WORLD, "timesteps %D fnorm = %G\n",
759:                        tsCtx->itstep, PetscAbsScalar(tsCtx->fnorm));
760:   }

762:   if (param->PreLoading) {
763:     tsCtx->fnorm_ini = 0.0;
764:   }
765: 
766:   return(0);
767: }

769: /*---------------------------------------------------------------------*/
772: PetscErrorCode AddTSTermLocal(DALocalInfo* info,Field **x,Field **f,AppCtx *user)
773: /*---------------------------------------------------------------------*/
774: {
775:   TstepCtx       *tsCtx = user->tsCtx;
776:   DA             da = info->da;
778:   PetscInt       i,j;
779:   PetscInt       xints,xinte,yints,yinte;
780:   PassiveReal    hx,hy,dhx,dhy,hxhy;
781:   PassiveReal    one = 1.0;
782:   PassiveScalar  dtinv;
783:   PassiveField   **xold;


787:   xints = info->xs; xinte = info->xs+info->xm;
788:   yints = info->ys; yinte = info->ys+info->ym;

790:   dhx  = info->mx/lx;            dhy = info->my/ly;
791:   hx   = one/dhx;                 hy = one/dhy;
792:   hxhy = hx*hy;

794:   dtinv = hxhy/(tsCtx->dt);

796:   DAVecGetArray(da,user->Xold,&xold);
797:   for (j=yints; j<yinte; j++) {
798:     for (i=xints; i<xinte; i++) {
799:       f[j][i].U += dtinv*(x[j][i].U-xold[j][i].U);
800:       f[j][i].F += dtinv*(x[j][i].F-xold[j][i].F);
801:     }
802:   }
803:   DAVecRestoreArray(da,user->Xold,&xold);

805:   return(0);
806: }

808: /*---------------------------------------------------------------------*/
811: PetscErrorCode AddTSTermLocal2(DALocalInfo* info,Field **x,Field **f,AppCtx *user)
812: /*---------------------------------------------------------------------*/
813: {
814:   TstepCtx       *tsCtx = user->tsCtx;
815:   DA             da = info->da;
817:   PetscInt       i,j,xints,xinte,yints,yinte;
818:   PassiveReal    hx,hy,dhx,dhy,hxhy;
819:   PassiveReal    one = 1.0, onep5 = 1.5, two = 2.0, p5 = 0.5;
820:   PassiveScalar  dtinv;
821:   PassiveField   **xoldold,**xold;


825:   xints = info->xs; xinte = info->xs+info->xm;
826:   yints = info->ys; yinte = info->ys+info->ym;

828:   dhx  = info->mx/lx;            dhy = info->my/ly;
829:   hx   = one/dhx;                 hy = one/dhy;
830:   hxhy = hx*hy;

832:   dtinv = hxhy/(tsCtx->dt);

834:   DAVecGetArray(da,user->Xoldold,&xoldold);
835:   DAVecGetArray(da,user->Xold,&xold);
836:   for (j=yints; j<yinte; j++) {
837:     for (i=xints; i<xinte; i++) {
838:       f[j][i].U += dtinv * (onep5 * x[j][i].U - two * xold[j][i].U +
839:                             p5 * xoldold[j][i].U);
840:       f[j][i].F += dtinv * (onep5 * x[j][i].F - two * xold[j][i].F +
841:                             p5 * xoldold[j][i].F);
842:     }
843:   }
844:   DAVecRestoreArray(da,user->Xoldold,&xoldold);
845:   DAVecRestoreArray(da,user->Xold,&xold);

847:   return(0);
848: }

850: /* Creates the null space of the Jacobian for a particular level */
853: PetscErrorCode CreateNullSpace(DMMG dmmg,Vec *nulls)
854: {
856:   PetscInt       i,N,rstart,rend;
857:   PetscScalar    scale,*vx;

860:   VecGetSize(nulls[0],&N);
861:   scale = 2.0/sqrt((PetscReal)N);
862:   VecGetArray(nulls[0],&vx);
863:   VecGetOwnershipRange(nulls[0],&rstart,&rend);
864:   for (i=rstart; i<rend; i++) {
865:     if (!(i % 4)) vx[i-rstart] = scale;
866:     else          vx[i-rstart] = 0.0;
867:   }
868:   VecRestoreArray(nulls[0],&vx);
869:   return(0);
870: }

872: /*
873:     This is an experimental function and can be safely ignored.
874: */
875: PetscErrorCode FormFunctionLocali(DALocalInfo *info,MatStencil *st,Field **x,PetscScalar *f,void *ptr)
876: {
877:   AppCtx         *user = (AppCtx*)ptr;
878:   TstepCtx       *tsCtx = user->tsCtx;
879:   Parameters      *param = user->param;
881:   PetscInt       i,j,c;
882:   PetscInt       xints,xinte,yints,yinte;
883:   PassiveReal    hx,hy,dhx,dhy,hxdhy,hydhx,hxhy,dhxdhy;
884:   PassiveReal    de2,rhos2,nu,eta,dde2;
885:   PassiveReal    two = 2.0,one = 1.0,p5 = 0.5;
886:   PassiveReal    F_eq_x,By_eq,dtinv;
887:   PetscScalar    xx;
888:   PetscScalar    vx,vy,avx,avy,vxp,vxm,vyp,vym;
889:   PetscScalar    Bx,By,aBx,aBy,Bxp,Bxm,Byp,Bym;
890:   PassiveField   **xold;

893:   de2     = sqr(param->d_e);
894:   rhos2   = sqr(param->rho_s);
895:   nu      = param->nu;
896:   eta     = param->eta;
897:   dde2    = one/de2;

899:   /* 
900:      Define mesh intervals ratios for uniform grid.
901:      [Note: FD formulae below are normalized by multiplying through by
902:      local volume element to obtain coefficients O(1) in two dimensions.]
903:   */
904:   dhx   = info->mx/lx;        dhy   = info->my/ly;
905:   hx    = one/dhx;             hy   = one/dhy;
906:   hxdhy = hx*dhy;           hydhx   = hy*dhx;
907:   hxhy  = hx*hy;             dhxdhy = dhx*dhy;

909:   xints = info->xs; xinte = info->xs+info->xm;
910:   yints = info->ys; yinte = info->ys+info->ym;


913:   i = st->i; j = st->j; c = st->c;

915: #ifdef EQ
916:       xx = i * hx;
917:       F_eq_x = - (1. + de2) * sin(PetscAbsScalar(xx));
918:       By_eq = sin(PetscAbsScalar(xx));
919: #else
920:       F_eq_x = 0.;
921:       By_eq = 0.;
922: #endif

924:       /*
925:        * convective coefficients for upwinding
926:        */

928:       vx  = - D_y(x,phi,i,j);
929:       vy  =   D_x(x,phi,i,j);
930:       avx = PetscAbsScalar(vx); vxp = p5*(vx+avx); vxm = p5*(vx-avx);
931:       avy = PetscAbsScalar(vy); vyp = p5*(vy+avy); vym = p5*(vy-avy);
932: #ifndef UPWINDING
933:       vxp = vxm = p5*vx;
934:       vyp = vym = p5*vy;
935: #endif

937:       Bx  =   D_y(x,psi,i,j);
938:       By  = - D_x(x,psi,i,j) + By_eq;
939:       aBx = PetscAbsScalar(Bx); Bxp = p5*(Bx+aBx); Bxm = p5*(Bx-aBx);
940:       aBy = PetscAbsScalar(By); Byp = p5*(By+aBy); Bym = p5*(By-aBy);
941: #ifndef UPWINDING
942:       Bxp = Bxm = p5*Bx;
943:       Byp = Bym = p5*By;
944: #endif

946:       DAVecGetArray(info->da,user->Xold,&xold);
947:       dtinv = hxhy/(tsCtx->dt);
948:       switch(c) {

950:         case 0:
951:           /* Lap(phi) - U */
952:           *f = (Lapl(x,phi,i,j) - x[j][i].U) * hxhy;
953:           break;

955:         case 1:
956:           /* psi - d_e^2 * Lap(psi) - F */
957:           *f = (x[j][i].psi - de2 * Lapl(x,psi,i,j) - x[j][i].F) * hxhy;
958:           break;

960:         case 2:
961:           /* vx * U_x + vy * U_y - (B_x * F_x + B_y * F_y) / d_e^2
962:             - nu Lap(U) */
963:           *f  =
964:             ((vxp * (D_xm(x,U,i,j)) + vxm * (D_xp(x,U,i,j)) +
965:               vyp * (D_ym(x,U,i,j)) + vym * (D_yp(x,U,i,j))) -
966:              (Bxp * (D_xm(x,F,i,j) + F_eq_x) + Bxm * (D_xp(x,F,i,j) + F_eq_x) +
967:               Byp * (D_ym(x,F,i,j)) + Bym * (D_yp(x,F,i,j))) * dde2 -
968:              nu * Lapl(x,U,i,j)) * hxhy;
969:           *f += dtinv*(x[j][i].U-xold[j][i].U);
970:           break;

972:         case 3:
973:           /* vx * F_x + vy * F_y - rho_s^2 * (B_x * U_x + B_y * U_y)
974:            - eta * Lap(psi) */
975:           *f  =
976:             ((vxp * (D_xm(x,F,i,j) + F_eq_x) + vxm * (D_xp(x,F,i,j) + F_eq_x) +
977:              vyp * (D_ym(x,F,i,j)) + vym * (D_yp(x,F,i,j))) -
978:             (Bxp * (D_xm(x,U,i,j)) + Bxm * (D_xp(x,U,i,j)) +
979:              Byp * (D_ym(x,U,i,j)) + Bym * (D_yp(x,U,i,j))) * rhos2 -
980:             eta * Lapl(x,psi,i,j)) * hxhy;
981:           *f += dtinv*(x[j][i].F-xold[j][i].F);
982:           break;
983:       }
984:       DAVecRestoreArray(info->da,user->Xold,&xold);


987:   /*
988:      Flop count (multiply-adds are counted as 2 operations)
989:   */
990:   /*  PetscLogFlops(84*info->ym*info->xm); FIXME */
991:   return(0);
992: }
993: /*
994:     This is an experimental function and can be safely ignored.
995: */
996: PetscErrorCode FormFunctionLocali4(DALocalInfo *info,MatStencil *st,Field **x,PetscScalar *ff,void *ptr)
997: {
998:   Field          *f  = (Field *)ff;
999:   AppCtx         *user = (AppCtx*)ptr;
1000:   TstepCtx       *tsCtx = user->tsCtx;
1001:   Parameters     *param = user->param;
1003:   PetscInt       i,j;
1004:   PetscInt       xints,xinte,yints,yinte;
1005:   PassiveReal    hx,hy,dhx,dhy,hxdhy,hydhx,hxhy,dhxdhy;
1006:   PassiveReal    de2,rhos2,nu,eta,dde2;
1007:   PassiveReal    two = 2.0,one = 1.0,p5 = 0.5;
1008:   PassiveReal    F_eq_x,By_eq,dtinv;
1009:   PetscScalar    xx;
1010:   PetscScalar    vx,vy,avx,avy,vxp,vxm,vyp,vym;
1011:   PetscScalar    Bx,By,aBx,aBy,Bxp,Bxm,Byp,Bym;
1012:   PassiveField   **xold;

1015:   de2     = sqr(param->d_e);
1016:   rhos2   = sqr(param->rho_s);
1017:   nu      = param->nu;
1018:   eta     = param->eta;
1019:   dde2    = one/de2;

1021:   /* 
1022:      Define mesh intervals ratios for uniform grid.
1023:      [Note: FD formulae below are normalized by multiplying through by
1024:      local volume element to obtain coefficients O(1) in two dimensions.]
1025:   */
1026:   dhx   = info->mx/lx;        dhy   = info->my/ly;
1027:   hx    = one/dhx;             hy   = one/dhy;
1028:   hxdhy = hx*dhy;           hydhx   = hy*dhx;
1029:   hxhy  = hx*hy;             dhxdhy = dhx*dhy;

1031:   xints = info->xs; xinte = info->xs+info->xm;
1032:   yints = info->ys; yinte = info->ys+info->ym;


1035:   i = st->i; j = st->j;

1037: #ifdef EQ
1038:       xx = i * hx;
1039:       F_eq_x = - (1. + de2) * sin(PetscAbsScalar(xx));
1040:       By_eq = sin(PetscAbsScalar(xx));
1041: #else
1042:       F_eq_x = 0.;
1043:       By_eq = 0.;
1044: #endif

1046:       /*
1047:        * convective coefficients for upwinding
1048:        */

1050:       vx  = - D_y(x,phi,i,j);
1051:       vy  =   D_x(x,phi,i,j);
1052:       avx = PetscAbsScalar(vx); vxp = p5*(vx+avx); vxm = p5*(vx-avx);
1053:       avy = PetscAbsScalar(vy); vyp = p5*(vy+avy); vym = p5*(vy-avy);
1054: #ifndef UPWINDING
1055:       vxp = vxm = p5*vx;
1056:       vyp = vym = p5*vy;
1057: #endif

1059:       Bx  =   D_y(x,psi,i,j);
1060:       By  = - D_x(x,psi,i,j) + By_eq;
1061:       aBx = PetscAbsScalar(Bx); Bxp = p5*(Bx+aBx); Bxm = p5*(Bx-aBx);
1062:       aBy = PetscAbsScalar(By); Byp = p5*(By+aBy); Bym = p5*(By-aBy);
1063: #ifndef UPWINDING
1064:       Bxp = Bxm = p5*Bx;
1065:       Byp = Bym = p5*By;
1066: #endif

1068:       DAVecGetArray(info->da,user->Xold,&xold);
1069:       dtinv = hxhy/(tsCtx->dt);
1070: 

1072: 
1073:           /* Lap(phi) - U */
1074:           f->phi = (Lapl(x,phi,i,j) - x[j][i].U) * hxhy;
1075: 

1077: 
1078:           /* psi - d_e^2 * Lap(psi) - F */
1079:           f->psi = (x[j][i].psi - de2 * Lapl(x,psi,i,j) - x[j][i].F) * hxhy;
1080: 

1082: 
1083:           /* vx * U_x + vy * U_y - (B_x * F_x + B_y * F_y) / d_e^2
1084:             - nu Lap(U) */
1085:           f->U  =
1086:             ((vxp * (D_xm(x,U,i,j)) + vxm * (D_xp(x,U,i,j)) +
1087:               vyp * (D_ym(x,U,i,j)) + vym * (D_yp(x,U,i,j))) -
1088:              (Bxp * (D_xm(x,F,i,j) + F_eq_x) + Bxm * (D_xp(x,F,i,j) + F_eq_x) +
1089:               Byp * (D_ym(x,F,i,j)) + Bym * (D_yp(x,F,i,j))) * dde2 -
1090:              nu * Lapl(x,U,i,j)) * hxhy;
1091:           f->U += dtinv*(x[j][i].U-xold[j][i].U);
1092: 

1094: 
1095:           /* vx * F_x + vy * F_y - rho_s^2 * (B_x * U_x + B_y * U_y)
1096:            - eta * Lap(psi) */
1097:           f->F  =
1098:             ((vxp * (D_xm(x,F,i,j) + F_eq_x) + vxm * (D_xp(x,F,i,j) + F_eq_x) +
1099:              vyp * (D_ym(x,F,i,j)) + vym * (D_yp(x,F,i,j))) -
1100:             (Bxp * (D_xm(x,U,i,j)) + Bxm * (D_xp(x,U,i,j)) +
1101:              Byp * (D_ym(x,U,i,j)) + Bym * (D_yp(x,U,i,j))) * rhos2 -
1102:             eta * Lapl(x,psi,i,j)) * hxhy;
1103:           f->F += dtinv*(x[j][i].F-xold[j][i].F);
1104: 
1105: 
1106:       DAVecRestoreArray(info->da,user->Xold,&xold);


1109:   /*
1110:      Flop count (multiply-adds are counted as 2 operations)
1111:   */
1112:   /*  PetscLogFlops(84*info->ym*info->xm); FIXME */
1113:   return(0);
1114: }